Multilabel Takagi-Sugeno-Kang Fuzzy System

被引:11
作者
Lou, Qiongdan [1 ,2 ]
Deng, Zhaohong [1 ,2 ,3 ,4 ]
Xiao, Zhiyong [1 ,2 ]
Choi, Kup-Sze [5 ]
Wang, Shitong [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Digital Design & Software Technol, Wuxi 214122, Jiangsu, Peoples R China
[3] Key Lab Computat Neurosci & Brain Inspired Intell, Shanghai 200433, Peoples R China
[4] ZJLab, Shanghai 200433, Peoples R China
[5] Hong Kong Polytech Univ, Ctr Smart Hlth, Hong Kong, Peoples R China
关键词
Correlation; Task analysis; Fuzzy systems; Cats; Fuzzy sets; Transforms; Takagi-Sugeno model; Fuzzy inference rules; label correlation learning; multilabel (ML) classification; multilabel Takagi-Sugeno-Kang (TSK) fuzzy system (FS); TSK FUZZY; LOGIC SYSTEM; CLASSIFIER;
D O I
10.1109/TFUZZ.2021.3115967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilabel (ML) classification can effectively identify the relevant labels of an instance from a given set of labels. However, the modeling of the relationship between the features and the labels is critical to classification performance. To this end, in this article, we propose a new ML classification method, called ML Takagi-Sugeno-Kang fuzzy system (ML-TSK FS), to improve the classification performance. The structure of ML-TSK FS is designed using fuzzy rules to model the relationship between features and labels. The FS is trained by integrating fuzzy inference-based ML correlation learning with ML regression loss. The proposed ML-TSK FS is evaluated experimentally on 12 benchmark ML datasets. The results show that the performance of ML-TSK FS is competitive with existing methods in terms of various evaluation metrics, indicating that it is able to model the feature-label relationship effectively using fuzzy inference rules and enhances the classification performance.
引用
收藏
页码:3410 / 3425
页数:16
相关论文
共 53 条
[11]  
Elisseeff A, 2002, ADV NEUR IN, V14, P681
[12]   Efficient Computation of Robust Weighted Low-Rank Matrix Approximations Using the L1 Norm [J].
Eriksson, Anders ;
van den Hengel, Anton .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1681-1690
[13]   Design and Application of Interval Type-2 TSK Fuzzy Logic System Based on QPSO Algorithm [J].
Fan, Qiu-feng ;
Wang, Tao ;
Chen, Yang ;
Zhan, Zhi-feng .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (03) :835-846
[14]   Multilabel classification via calibrated label ranking [J].
Fuernkranz, Johannes ;
Huellermeier, Eyke ;
Mencia, Eneldo Loza ;
Brinker, Klaus .
MACHINE LEARNING, 2008, 73 (02) :133-153
[15]   Robust Adaptive Tracking Control for Manipulators Based on a TSK Fuzzy Cerebellar Model Articulation Controller [J].
Guan, Jiansheng ;
Lin, Chih-Min ;
Ji, Guo-Li ;
Qian, Ling-Wu ;
Zheng, Yi-Min .
IEEE ACCESS, 2018, 6 :1670-1679
[16]  
Guo Y., 2011, 22 INT JOINT C ART I, V22, P1300, DOI DOI 10.5591/978-1-57735-516-8/IJCAI11-220
[17]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[18]   Joint Binary Neural Network for Multi-label Learning with Applications to Emotion Classification [J].
He, Huihui ;
Xia, Rui .
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, 2018, 11108 :250-259
[19]  
Ji S., 2008, P 14 ACM SIGKDD INT, P381, DOI DOI 10.1145/1401890.1401939
[20]   Recognition of Epileptic EEG Signals Using a Novel Multiview TSK Fuzzy System [J].
Jiang, Yizhang ;
Deng, Zhaohong ;
Chung, Fu-Lai ;
Wang, Guanjin ;
Qian, Pengjiang ;
Choi, Kup-Sze ;
Wang, Shitong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (01) :3-20