A large deviation result for maximum likelihood estimator of non-homogeneous Ornstein-Uhlenbeck processes

被引:1
作者
Zhao, Shoujiang [1 ]
Liu, Qiaojing [2 ]
机构
[1] China Three Gorges Univ, Sch Sci, Yichang 443002, Peoples R China
[2] Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
Large deviation principle; Maximum likelihood estimator; Ornstein-Uhlenbeck process; alpha-Brownian bridge;
D O I
10.1016/j.spl.2020.108753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the large deviation principle for maximum likelihood estimator of some diffusion process. We overcome the difficulty of non-steepness and obtain large deviations in the case of non-Gaussian limit distribution by local large deviation principle and exponential tightness. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 11 条
[1]   Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions [J].
Barczy, M. ;
Pap, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) :405-424
[2]   Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes [J].
Barczy, M. ;
Pap, G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) :1576-1593
[3]   Large deviations for the Ornstein-Uhlenbeck process without tears [J].
Bercu, Bernard ;
Richou, Adrien .
STATISTICS & PROBABILITY LETTERS, 2017, 123 :45-55
[4]   LARGE DEVIATIONS FOR THE ORNSTEIN-UHLENBECK PROCESS WITH SHIFT [J].
Bercu, Bernard ;
Richou, Adrien .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) :880-901
[5]  
BISHWAL J.P.N., 2008, PARAMETER ESTIMATION
[6]  
Dembo A., 2009, Large Deviations Techniques and Applications
[7]   Large deviations in estimation of an Ornstein-Uhlenbeck model [J].
Florens-Landais, D ;
Pham, H .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (01) :60-77
[8]   Moderate deviations for parameter estimation in some time inhomogeneous diffusions [J].
Hui, Jiang .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) :3665-3674
[9]  
Jacod J., 2003, Limit Theorems for Stochastic Processes, V2nd ed.
[10]   Large Deviations for Parameter Estimators of Some Time Inhomogeneous Diffusion Process [J].
Zhao, Shou Jiang ;
Gao, Fu Qing .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) :2245-2258