A MODULE THEORETIC APPROACH TO ZERO-DIVISOR GRAPH WITH RESPECT TO (FIRST) DUAL

被引:0
作者
Baziar, M. [1 ]
Momtahan, E. [1 ]
Safaeeyan, S. [1 ]
机构
[1] Univ Yasuj, Dept Math, Yasuj 75914, Iran
关键词
Zero-divisor graph; clique number; chromatic number; module; ANNIHILATING-IDEAL GRAPH; COMMUTATIVE RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an R-module and 0 not equal f is an element of M* = Hom(M, R). We associate an undirected graph Gamma(f) (M) to M in which non-zero elements x and y of M are adjacent provided that xf(y) = 0 or y f (x) = 0. We observe that over a commutative ring R, Gamma(f) (M) is connected and diam(Gamma(f) (M)) <= 3. Moreover, if Gamma(f) (M) contains a cycle, then gr(Gamma(f) (M)) <= 4. Furthermore, if vertical bar Gamma(f)(M)vertical bar >= 1, then Gamma(f) (M) is finite if and only if M is finite. Also if Gamma(f) (M) = empty set, then f is monomorphism (the converse is true if R is a domain). If M is either a free module with rank(M) >= 2 or a non-finitely generated projective module, there exists f is an element of M* with rad(Gamma(f) (M)) = 1 and diam(Gamma(f) (M)) <= 2. We prove that for a domain R, the chromatic number and the clique number of Gamma(f) (M) are equal. Finally, we give answer to a question posed in [M. Baziar, E. Momtahan and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, T. Algebra Appl. 12 (2013), no. 2, 11 pages].
引用
收藏
页码:861 / 872
页数:12
相关论文
共 21 条
[1]   On zero-divisor graphs of finite rings [J].
Akbari, S. ;
Mohammadian, A. .
JOURNAL OF ALGEBRA, 2007, 314 (01) :168-184
[2]  
Anderson D.F., 2011, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, P23
[3]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[4]  
Anderson DF, 2001, LECT NOTES PURE APPL, V220, P61
[5]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[6]   Zero-divisor graph of abelian groups [J].
Baziar, M. ;
Momtahan, E. ;
Safaeeyan, S. ;
Ranjebar, N. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
[7]   A ZERO-DIVISOR GRAPH FOR MODULES WITH RESPECT TO THEIR (FIRST) DUAL [J].
Baziar, M. ;
Momtahan, E. ;
Safaeeyan, S. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (02)
[8]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[9]   ZERO DIVISOR GRAPHS FOR MODULES OVER COMMUTATIVE RINGS [J].
Behboodi, M. .
JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (02) :175-197
[10]   THE ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS I [J].
Behboodi, M. ;
Rakeei, Z. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) :727-739