Fast solution of electromagnetic scattering problems using Xeon Phi coprocessors

被引:1
|
作者
Campon, J. L. [1 ]
Landesa, L. [2 ]
机构
[1] Caceres Prov Council, Informat IT Secur Dept, Plaza Santa Maria S-N, Caceres 10071, Spain
[2] Univ Extremadura, Escuela Politecn, Avda Univ S-N, Caceres 10003, Spain
来源
JOURNAL OF SUPERCOMPUTING | 2019年 / 75卷 / 01期
关键词
MIC; Xeon Phi; Electromagnetic scattering; FAST-MULTIPOLE ALGORITHM; PREDICTION;
D O I
10.1007/s11227-018-02731-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Electromagnetic scattering problems can be solved by discretizing and transforming integral equations into matrix equations using the method of moments. In large-scale problems, the problem cannot be solved directly and needs to be solved using iterative methods, which use matrix vector products (MVP) to perform the iterative convergence to the solution. An efficient parallel implementation of MVP over Intel Xeon Phi coprocessor is proposed in this paper to speed up the solution of the scattering over a generalized minimal residual method. Using these manycore integrated processors, we can solve an electromagnetic scattering three-dimensional problem improving runtime on a coprocessor system.
引用
收藏
页码:370 / 383
页数:14
相关论文
共 50 条
  • [1] Fast solution of electromagnetic scattering problems using Xeon Phi coprocessors
    J. L. Campon
    L. Landesa
    The Journal of Supercomputing, 2019, 75 : 370 - 383
  • [2] Lattice QCD on Intel® Xeon Phi™ Coprocessors
    Joo, Balint
    Kalamkar, Dhiraj D.
    Vaidyanathan, Karthikeyan
    Smelyanskiy, Mikhail
    Pamnany, Kiran
    Lee, Victor W.
    Dubey, Pradeep
    Watson, William, III
    SUPERCOMPUTING (ISC 2013), 2013, 7905 : 40 - 54
  • [3] Exploring SIMD for Molecular Dynamics, Using Intel®Xeon®Processors and Intel®Xeon Phi™ Coprocessors
    Pennycook, S. J.
    Hughes, C. J.
    Smelyanskiy, M.
    Jarvis, S. A.
    IEEE 27TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2013), 2013, : 1085 - 1097
  • [4] Effective SIMD Vectorization for Intel Xeon Phi Coprocessors
    Tian, Xinmin
    Saito, Hideki
    Preis, Serguei V.
    Garcia, Eric N.
    Kozhukhov, Sergey S.
    Masten, Matt
    Cherkasov, Aleksei G.
    Panchenko, Nikolay
    SCIENTIFIC PROGRAMMING, 2015, 2015
  • [5] Communication Models for Distributed Intel Xeon Phi Coprocessors
    Neuwirth, Sarah
    Frey, Dirk
    Bruening, Ulrich
    2015 IEEE 21ST INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2015, : 499 - 506
  • [6] Evaluation of OpenMP SIMD Directives on Xeon Phi Coprocessors
    Ponte, Christian
    Gonzalez-Dominguez, Jorge
    Martin, Maria J.
    2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2017, : 389 - 395
  • [7] MrPhi: An Optimized MapReduce Framework on Intel Xeon Phi Coprocessors
    Lu, Mian
    Liang, Yun
    Huynh Phung Huynh
    Ong, Zhongliang
    He, Bingsheng
    Goh, Rick Siow Mong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (11) : 3066 - 3078
  • [8] Utilizing Multiple Xeon Phi Coprocessors on One Compute Node
    Dong, Xinnan
    Chai, Jun
    Yang, Jing
    Wen, Mei
    Wu, Nan
    Cai, Xing
    Zhang, Chunyuan
    Chen, Zhaoyun
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2014, PT II, 2014, 8631 : 68 - 81
  • [9] Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors
    Feinstein, Wei P.
    Moreno, Juana
    Jarrell, Mark
    Brylinski, Michal
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (04) : 429 - 439
  • [10] Beacon: Deployment and Application of Intel Xeon Phi Coprocessors for Scientific Computing
    Brook, R. Glenn
    Heinecke, Alexander
    Costa, Anthony B.
    Peitz, Paul, Jr.
    Betro, Vincent C.
    Baer, Troy
    Bader, Michael
    Dubey, Pradeep
    COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (02) : 65 - 72