DESCRIBING TORIC VARIETIES AND THEIR EQUIVARIANT COHOMOLOGY

被引:16
作者
Franz, Matthias [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
toric variety; equivariant CW complex; piecewise polynomials; torsion-free cohomology; TORUS ACTIONS; MODULES;
D O I
10.4064/cm121-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Topologically, compact toric varieties can be constructed as identification spaces: they are quotients of the product of a compact torus and the order complex of the fan. We give a detailed proof of this fact, extend it to the non-compact case and draw several, mostly cohomological conclusions. In particular, we show that the equivariant integral cohomology of a toric variety can be described in terms of piecewise polynomials on the fan if the ordinary integral cohomology is concentrated in even degrees. This generalizes a result of Bahri-Franz-Ray to the non-compact case. We also investigate torsion phenomena in integral cohomology.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 29 条
[1]  
Allday C, 1993, CAMBRIDGE STUD ADV M, V32
[2]  
[Anonymous], 1982, GRAD TEXTS MATH
[3]  
[Anonymous], 1993, ANN MATH STUD
[4]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[5]  
BAHRI A, GLOBAL REPRESE UNPUB
[6]  
BAHRI A, WEIGHTED PROJE UNPUB
[7]   The equivariant cohomology ring of weighted projective space [J].
Bahri, Anthony ;
Franz, Matthias ;
Ray, Nigel .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :395-405
[8]   Combinatorial intersection cohomology for fans [J].
Barthel, G ;
Brasselet, JP ;
Fieseler, KH ;
Kaup, L .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (01) :1-41
[9]   Invariant divisors and Poincare homomorphisms of complex toric varieties [J].
Barthel, G ;
Brasselet, JP ;
Fieseler, KH ;
Kaup, L .
TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (03) :363-390
[10]   MODULES OF PIECEWISE POLYNOMIALS AND THEIR FREENESS [J].
BILLERA, LJ ;
ROSE, LL .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (04) :485-497