Analysis of parallel preconditioned conjugate gradient algorithms

被引:1
|
作者
Ciegis, R [1 ]
机构
[1] Vilnius Gediminas Tech Univ, LT-10223 Vilnius, Lithuania
关键词
parallel algorithms; preconditioned conjugate gradient method; scalability analysis; incomplete factorization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The conjugate gradient method is an iterative technique used to solve systems of linear equations. The paper analyzes the performance of parallel preconditioned conjugate gradient algorithms. First, a theoretical model is proposed for estimation of the complexity of PPCG method and a scalability analysis is done for three different data decomposition cases. Computational experiments are done on IBM SP4 computer and some results are presented.. It is shown that theoretical predictions agree well with computational results.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [31] A parallel scaled conjugate-gradient algorithm for the solution phase of gathering radiosity on hypercubes
    Kurc, TM
    Aykanat, C
    Ozguc, B
    VISUAL COMPUTER, 1997, 13 (01): : 1 - 19
  • [32] A parallel scaled conjugate-gradient algorithm for the solution phase of gathering radiosity on hypercubes
    Tahsin M. Kurç
    Cevdet Aykanat
    Bülent Özgüç
    The Visual Computer, 1997, 13 : 1 - 19
  • [33] Application of a GPU-accelerated hybrid preconditioned conjugate gradient approach for large 3D problems in computational geomechanics
    Kardani, Omid
    Lyamin, Andrei
    Krabbenhoft, Kristian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1114 - 1131
  • [34] Parallel preprocessing algorithms for document image analysis
    Rao, PS
    Srinivas, C
    Chand, BH
    Agarwal, A
    JOURNAL OF THE INSTITUTION OF ELECTRONICS AND TELECOMMUNICATION ENGINEERS, 1996, 42 (03): : 165 - 173
  • [35] Parallel Algorithms for Multifractal Analysis of River Networks
    Primavera, Leonardo
    Florio, Emilia
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 307 - 317
  • [36] The construction of an algebraically reduced system for the acceleration of preconditioned conjugate gradients
    Bielawski, SS
    Mulyarchik, SG
    Popov, AV
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 70 (02) : 189 - 200
  • [37] Parallel preconditioners for the conjugate gradient algorithm using Gram-Schmidt and least squares methods
    Straubhaar, Julien
    PARALLEL COMPUTING, 2008, 34 (10) : 551 - 569
  • [38] MULTILEVEL ALGEBRAIC APPROACH FOR PERFORMANCE ANALYSIS OF PARALLEL ALGORITHMS
    D'Amore, Luisa
    Mele, Valeria
    Romano, Diego
    Laccetti, Giuliano
    COMPUTING AND INFORMATICS, 2019, 38 (04) : 817 - 850
  • [39] Parallel contact algorithms for nonlinear implicit transient analysis
    Xu, Z
    Accorsi, M
    Leonard, J
    COMPUTATIONAL MECHANICS, 2004, 34 (04) : 247 - 255
  • [40] Parallel contact algorithms for nonlinear implicit transient analysis
    Z. Xu
    M. Accorsi
    J. Leonard
    Computational Mechanics, 2004, 34 : 247 - 255