UPPER AND LOWER L2-DECAY BOUNDS FOR A CLASS OF DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS

被引:2
作者
Li, Chunhua [1 ]
Nishii, Yoshinori [2 ]
Sagawa, Yuji [3 ]
Sunagawa, Hideaki [4 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Math, 977 Gongyuan Rd, Jilin, Peoples R China
[2] Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka, Tokyo, Tokyo 1628601, Japan
[3] Chiba Inst Technol, Dept Math, 2-1-1 Shibazono, Narashino, Chiba 2750023, Japan
[4] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto, Sumiyoshi, Osaka 5588585, Japan
关键词
Derivative nonlinear Schrö dinger equation; weakly dissipative structure; optimal L-2-decay rate; LARGE TIME ASYMPTOTICS; DISSIPATIVE NONLINEARITY; DECAY-RATES; LIFE-SPAN; BEHAVIOR; SYSTEM;
D O I
10.3934/dcds.2022129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for cubic derivative nonlinear Schrodinger equations possessing weakly dissipative structure in one space dimension. We show that the small data solution decays like O((log t)(-1/4)) in L-2 as t -> +infinity. Furthermore, we find that this L-2-decay rate is optimal by giving a lower estimate of the same order.
引用
收藏
页码:5893 / 5908
页数:16
相关论文
共 28 条
[1]   Asymptotic behavior for a dissipative nonlinear Schrodinger [J].
Cazenave, Thierry ;
Han, Zheng ;
Naumkin, Ivan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
[2]   ASYMPTOTIC BEHAVIOR FOR A SCHRODINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION [J].
Cazenave, Thierry ;
Han, Zheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) :4801-4819
[3]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[4]  
Hayashi N., 2002, INT J PURE APPL MATH, V3, P255
[5]   On the Schrodinger equation with dissipative nonlinearities of derivative type [J].
Hayashi, Nakao ;
Naumkin, Pavel I. ;
Sunagawa, Hideaki .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :278-291
[6]   UPPER AND LOWER TIME DECAY BOUNDS FOR SOLUTIONS OF DISSIPATIVE NONLINEAR SCHRODINGER EQUATIONS [J].
Hayashi, Nakao ;
Li, Chunhua ;
Naumkin, Pavel I. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) :2089-2104
[7]   Time Decay for Nonlinear Dissipative Schrodinger Equations in Optical Fields [J].
Hayashi, Nakao ;
Li, Chunhua ;
Naumkin, Pavel I. .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[8]   Asymptotic behavior for solutions to the dissipative nonlinear Scrodinger equations with the fractional Sobolev space [J].
Hoshino, Gaku .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (11)
[9]   DISSIPATIVE NONLINEAR SCHRODINGER EQUATIONS FOR LARGE DATA IN ONE SPACE DIMENSION [J].
Hoshino, Gaku .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) :967-981
[10]   The initial value problem for nonlinear Schrodinger equations with a dissipative nonlinearity in one space dimension [J].
Jin, Guangzhi ;
Jin, Yuanfeng ;
Li, Chunhua .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (04) :983-995