Boundary Control of the Kuramoto-Sivashinsky Equation Under Intermittent Data Availability

被引:0
作者
Maghenem, M. [1 ]
Prieur, C. [1 ]
Witrant, E. [1 ]
机构
[1] Univ prime Grenoble Alpes, CNRS, Grenoble INP, GIPSA lab, F-38000 Grenoble, France
来源
2022 AMERICAN CONTROL CONFERENCE, ACC | 2022年
关键词
NETWORKED CONTROL; SYNCHRONIZATION; SENSOR; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, two boundary controllers are proposed to stabilize the origin of the nonlinear Kuramoto-Sivashinsky equation under intermittent measurements. More precisely, the spatial domain is divided into two sub-domains. The state of the system on the first sub-domain is measured along a given interval of time, and the state on the remaining sub-domain is measured along another interval of time. Under the proposed sensing scenario, we control the considered equation by designing the value of the state at three isolated spatial points, the two extremities of the spatial domain plus one inside point. Furthermore, we impose a null value for the spatial gradient of the state at these three locations. Under such a control loop, we propose two types of controllers and we analyze the stability of the resulting closed-loop system in each case. The paper is concluded with some discussions and future works.
引用
收藏
页码:2227 / 2232
页数:6
相关论文
共 50 条
[31]   NULL CONTROLLABILITY AND STABILIZATION OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION [J].
Cerpa, Eduardo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (01) :91-102
[32]   Coherent structures theory for the generalized Kuramoto-Sivashinsky equation [J].
Tseluiko, D. ;
Saprykin, S. ;
Kalliadasis, S. .
THIRD INTERNATIONAL SYMPOSIUM ON BIFURCATIONS AND INSTABILITIES IN FLUID DYNAMICS, 2010, 216
[33]   On dusty gas model governed by the Kuramoto-Sivashinsky equation [J].
Doronin, Gleb G. ;
Larkin, Nikolai A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (01) :67-80
[34]   Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation [J].
Tchaho, C. T. Djeumen ;
Omanda, H. M. ;
Belobo, D. Belobo .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09)
[35]   Topological classification of periodic orbits in the Kuramoto-Sivashinsky equation [J].
Dong, Chengwei .
MODERN PHYSICS LETTERS B, 2018, 32 (15)
[36]   Bifurcation of two-dimensional Kuramoto-Sivashinsky equation [J].
Li C.P. ;
Yang Z.H. .
Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (3) :263-270
[37]   Bifurcation and Stability of Nontrivial Solution to Kuramoto-Sivashinsky Equation [J].
李常品 ;
杨忠华 ;
伍渝江 .
Journal of Shanghai University, 1997, (02) :95-97
[38]   Feedback semiglobal stabilization to trajectories for the Kuramoto-Sivashinsky equation [J].
Rodrigues, Sergio S. ;
Seifu, Dagmawi A. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2023, 40 (01) :38-80
[39]   COMPUTATIONAL STUDY OF THE DISPERSIVELY MODIFIED KURAMOTO-SIVASHINSKY EQUATION [J].
Akrivis, G. ;
Papageorgiou, D. T. ;
Smyrlis, Y. -S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A792-A813
[40]   Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation [J].
Baudouin, Lucie ;
Cerpa, Eduardo ;
Crepeau, Emmanuelle ;
Mercado, Alberto .
APPLICABLE ANALYSIS, 2013, 92 (10) :2084-2102