Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI

被引:528
|
作者
Landau, Susan M. [1 ]
Harvey, Danielle [2 ]
Madison, Cindee M. [1 ]
Koeppe, Robert A. [3 ]
Reiman, Eric M. [4 ]
Foster, Norman L. [5 ]
Weiner, Michael W. [6 ]
Jagust, William J. [1 ,7 ]
机构
[1] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[2] Univ Calif Davis, Sch Med, Davis, CA 95616 USA
[3] Univ Michigan, Sch Med, Ann Arbor, MI 48109 USA
[4] Banner Alzheimers Inst, Phoenix, AZ 85006 USA
[5] Univ Utah, Dept Neurol, Salt Lake City, UT 84108 USA
[6] San Francisco Vet Adm Hosp, San Francisco, CA 94121 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
FDG-PET; Alzheimer's disease; Mild cognitive impairment; RANDOM-EFFECTS MODELS; ALZHEIMERS-DISEASE; GLUCOSE-METABOLISM; IMPAIRMENT; PROGRESSION; DEMENTIA; TOMOGRAPHY; PREDICTION; DIAGNOSIS; TRIALS;
D O I
10.1016/j.neurobiolaging.2009.07.002
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
The Functional Activities Questionnaire (FAQ) and Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) are frequently used indices of cognitive decline in Alzheimer's disease (AD). The goal of this study was to compare FDG-PET and clinical measurements in a large sample of elderly subjects with memory disturbance. We examined relationships between glucose metabolism in FDG-PET regions of interest (FDG-ROIs), and ADAS-cog and FAQ scores in AD and mild cognitive impairment (MCI) patients enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Low glucose metabolism at baseline predicted subsequent ADAS-cog and FAQ decline. In addition, longitudinal glucose metabolism decline was associated with concurrent ADAS-cog and FAQ decline. Finally, a power analysis revealed that FDG-ROI values have greater statistical power than ADAS-cog to detect attenuation of cognitive decline in AD and MCI patients. Glucose metabolism is a sensitive measure of change in cognition and functional ability in AD and MCI, and has value in predicting future cognitive decline. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1207 / 1218
页数:12
相关论文
共 50 条
  • [1] Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study
    Teng, Lirong
    Li, Yongchao
    Zhao, Yu
    Hu, Tao
    Zhang, Zhe
    Yao, Zhijun
    Hu, Bin
    BMC NEUROLOGY, 2020, 20 (01)
  • [2] Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI
    Carlson, Mackenzie L.
    DiGiacomo, Phillip S.
    Fan, Audrey P.
    Goubran, Maged
    Khalighi, Mohammad Mehdi
    Chao, Steven Z.
    Vasanawala, Minal
    Wintermark, Max
    Mormino, Elizabeth
    Zaharchuk, Greg
    James, Michelle L.
    Zeineh, Michael M.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Early identification of MCI converting to AD: a FDG PET study
    Pagani, Marco
    Nobili, Flavio
    Morbelli, Silvia
    Arnaldi, Dario
    Giuliani, Alessandro
    Oberg, Johanna
    Girtler, Nicola
    Brugnolo, Andrea
    Picco, Agnese
    Bauckneht, Matteo
    Piva, Roberta
    Chincarini, Andrea
    Sambuceti, Gianmario
    Jonsson, Cathrine
    De Carli, Fabrizio
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (12) : 2042 - 2052
  • [4] FDG-PET markers of heterogeneity and different risk of progression in amnestic MCI
    Caminiti, Silvia Paola
    De Francesco, Silvia
    Tondo, Giacomo
    Galli, Alice
    Redolfi, Alberto
    Perani, Daniela
    ALZHEIMERS & DEMENTIA, 2024, 20 (01) : 159 - 172
  • [5] Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline
    Torosyan, Nare
    Mason, Kelsey
    Dahlbom, Magnus
    Silverman, Daniel H. S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (08) : 1355 - 1363
  • [6] Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
    Cabral, Carlos
    Morgado, Pedro M.
    Costa, Durval Campos
    Silveira, Margarida
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 58 : 101 - 109
  • [7] Clinical utility of FDG-PET for the clinical diagnosis in MCI
    Arbizu, Javier
    Festari, Cristina
    Altomare, Daniele
    Walker, Zuzana
    Bouwman, Femke
    Rivolta, Jasmine
    Orini, Stefania
    Barthel, Henryk
    Agosta, Federica
    Drzezga, Alexander
    Nestor, Peter
    Boccardi, Marina
    Frisoni, Giovanni Battista
    Nobili, Flavio
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (09) : 1497 - 1508
  • [8] Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects: automated FDG-PET image analysis
    Clerici, F.
    Del Sole, A.
    Chiti, A.
    Maggiore, L.
    Lecchi, M.
    Pomati, S.
    Mosconi, L.
    Lucignani, G.
    Mariani, C.
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2009, 53 (06): : 646 - 657
  • [9] Predicting MCI Progression with Individual Metabolic Network Based on Longitudinal FDG-PET
    Zhao, Yu
    Yao, Zhijun
    Zheng, Weihao
    Yang, Jing
    Ding, Zhijie
    Li, Mi
    Lu, Shengfu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1894 - 1899
  • [10] Unawareness of Memory Deficit in Amnestic MCI: FDG-PET Findings
    Nobili, Flavio
    Mazzei, Debora
    Dessi, Barbara
    Morbelli, Silvia
    Brugnolo, Andrea
    Barbieri, Paola
    Girtler, Nicola
    Sambuceti, Gianmario
    Rodriguez, Guido
    Pagani, Marco
    JOURNAL OF ALZHEIMERS DISEASE, 2010, 22 (03) : 993 - 1003