Deep Learning for Hand Gesture Recognition on Skeletal Data

被引:117
作者
Devineau, Guillaume [1 ]
Xi, Wang [2 ]
Moutarde, Fabien [1 ]
Yang, Jie [2 ]
机构
[1] PSL Res Univ, MINES ParisTech, Ctr Robot, 60 Bd St Michel, F-75006 Paris, France
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
来源
PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018) | 2018年
关键词
D O I
10.1109/FG.2018.00025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new 3D hand gesture recognition approach based on a deep learning model. We propose a new Convolutional Neural Network (CNN) where sequences of hand-skeletal joints' positions are processed by parallel convolutions; we then investigate the performance of this model on hand gesture sequence classification tasks. Our model only uses hand-skeletal data and no depth image. Experimental results show that our approach achieves a state-of-the-art performance on a challenging dataset (DHG dataset from the SHREC 2017 3D Shape Retrieval Contest), when compared to other published approaches. Our model achieves a 91.28% classification accuracy for the 14 gesture classes case and an 84.35% classification accuracy for the 28 gesture classes case.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
[Anonymous], PROC CVPR IEEE
[3]  
[Anonymous], ARXIV170803278
[4]  
[Anonymous], 2013, FOUND TRENDS SIGNAL, DOI DOI 10.1561/2000000039
[5]  
[Anonymous], 2016, P 9 ISCA SPEECH SYNT
[6]  
[Anonymous], 2008, P BMVC 2008 19 BRIT
[7]  
[Anonymous], 2017, INT C LEARN REPR ICL
[8]  
[Anonymous], 2017, ARXIV170700600
[9]  
[Anonymous], HAND GESTURE RECOGNI
[10]  
[Anonymous], ARXIV170802979