Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons

被引:103
作者
Yamanishi, Masamichi [1 ]
Edamura, Tadataka [1 ]
Fujita, Kazuue [1 ]
Akikusa, Naota [1 ]
Kan, Hirofumi [1 ]
机构
[1] Cent Res Labs, Hamamatsu Photon KK, Shizuoka 4348601, Japan
关键词
linewidth; nonradiative relaxation; quantum cascade (QC) laser; thermal photon;
D O I
10.1109/JQE.2007.907563
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a theory of the intrinsic linewidths of laser output of single-mode quantum-cascade (QC) lasers in mid-infrared and terahertz (THz) ranges. In the theoretical treatment, the concept of an effective coupling efficiency of spontaneous emission, given by a fractional rate of spontaneous emission coupled into a lasing mode to total nonlasing relaxation, is introduced to clarify a hidden reason for the narrowness of the linewidths. A narrow linewidth (12-kHz) reported with a frequency-stabilized 8.5-mu m distributed-feedback QC laser is successfully interpreted in terms of an extremely small effective coupling efficiency of spontaneous emission, caused by ultrafast nonradiative scatterings. The present theory predicts the presence of a minimum "linewidth floor" in a high-injection-current region and the independence of linewidth on detuning between gain-peak and emission wavelengths. The theoretical treatment is expanded to derive the further modified Schawlow-Townes formula including the line-broadening by black body radiation in a THz QC laser. The linewidth of a THz QC laser is predicted to be considerably broadened by black body radiation.
引用
收藏
页码:12 / 29
页数:18
相关论文
共 42 条
[1]   ELECTRIC-FIELD DEPENDENCE OF INTRASUBBAND POLAR-OPTICAL-PHONON SCATTERING IN A QUANTUM WELL [J].
AHN, D ;
CHUANG, SL .
PHYSICAL REVIEW B, 1988, 37 (05) :2529-2535
[2]   Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Linfield, EH ;
Ritchie, DA ;
Withington, S ;
Scalari, G ;
Ajili, L ;
Faist, J .
OPTICS LETTERS, 2004, 29 (14) :1632-1634
[3]   Linewidth and tuning characteristics of terahertz quantum cascade lasers [J].
Barkan, A ;
Tittel, FK ;
Mittleman, DM ;
Dengler, R ;
Siegel, PH ;
Scalari, G ;
Ajili, L ;
Faist, J ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA .
OPTICS LETTERS, 2004, 29 (06) :575-577
[4]   Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser [J].
Baryshev, A. ;
Hovenier, J. N. ;
Adam, A. J. L. ;
Kasalynas, I. ;
Gao, J. R. ;
Klaassen, T. O. ;
Williams, B. S. ;
Kumar, S. ;
Hu, Q. ;
Reno, J. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (03)
[5]   Frequency and phase-lock control of a 3 THz quantum cascade laser [J].
Betz, AL ;
Boreiko, RT ;
Williams, BS ;
Kumar, S ;
Hu, Q ;
Reno, JL .
OPTICS LETTERS, 2005, 30 (14) :1837-1839
[6]   Characterization and analysis of single-mode high-power continuous-wave quantum-cascade laser [J].
Bewley, WW ;
Vurgaftman, I ;
Kim, CS ;
Meyer, JR ;
Nguyen, J ;
Evans, A ;
Yu, JS ;
Darvish, SR ;
Slivken, S ;
Razeghi, M .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (08)
[7]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[8]   Importance of coherence for electron transport in terahertz quantum cascade lasers [J].
Callebaut, H ;
Hu, Q .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (10)
[9]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[10]   High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼7.8 μm [J].
Darvish, S. R. ;
Zhang, W. ;
Evans, A. ;
Yu, J. S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)