Deep Neural Networks for In Situ Hybridization Grid Completion and Clustering

被引:4
作者
Li, Yujie [1 ]
Huang, Heng [2 ,3 ]
Chen, Hanbo [1 ]
Liu, Tianming [1 ]
机构
[1] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
[2] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
关键词
Training; Brain; Neural networks; Organizations; Computer architecture; Measurement; Bioinformatics; Deep belief network; fully convolutional neural network; restricted Boltzmann machines; transcriptome architecture; MOUSE-BRAIN; EXPRESSION; GENES; PATTERNS; ATLAS;
D O I
10.1109/TCBB.2018.2864262
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptome in brain plays a crucial role in understanding the cortical organization and the development of brain structure and function. Two challenges, incomplete data and high dimensionality of transcriptome, remain unsolved. Here, we present a novel training scheme that successfully adapts the U-net architecture to the problem of volume recovery. By analogy to denoising autoencoder, we hide a portion of each training sample so that the network can learn to recover missing voxels from context. Then on the completed volumes, we show that Restricted Boltzmann Machines (RBMs) can be used to infer co-occurrences among voxels, providing foundations for dividing the cortex into discrete subregions. As we stack multiple RBMs to form a deep belief network (DBN), we progressively map the high-dimensional raw input into abstract representations and create a hierarchy of transcriptome architecture. A coarse to fine organization emerges from the network layers. This organization incidentally corresponds to the anatomical structures, suggesting a close link between structures and the genetic underpinnings. Thus, we demonstrate a new way of learning transcriptome-based hierarchical organization using RBM and DBN.
引用
收藏
页码:536 / 546
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 2012, P 25 INT C NEUR INF
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 2011, P 28 INT C MACH LEAR
[4]  
[Anonymous], [No title captured]
[5]   Transcriptional Architecture of the Primate Neocortex [J].
Bernard, Amy ;
Lubbers, Laura S. ;
Tanis, Keith Q. ;
Luo, Rui ;
Podtelezhnikov, Alexei A. ;
Finney, Eva M. ;
McWhorter, Mollie M. E. ;
Serikawa, Kyle ;
Lemon, Tracy ;
Morgan, Rebecca ;
Copeland, Catherine ;
Smith, Kimberly ;
Cullen, Vivian ;
Davis-Turak, Jeremy ;
Lee, Chang-Kyu ;
Sunkin, Susan M. ;
Loboda, Andrey P. ;
Levine, David M. ;
Stone, David J. ;
Hawrylycz, Michael J. ;
Roberts, Christopher J. ;
Jones, Allan R. ;
Geschwind, Daniel H. ;
Lein, Ed S. .
NEURON, 2012, 73 (06) :1083-1099
[6]   Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy [J].
Bohland, Jason W. ;
Bokil, Hemant ;
Pathak, Sayan D. ;
Lee, Chang-Kyu ;
Ng, Lydia ;
Lau, Christopher ;
Kuan, Chihchau ;
Hawrylycz, Michael ;
Mitra, Partha P. .
METHODS, 2010, 50 (02) :105-112
[7]   A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function [J].
Cahoy, John D. ;
Emery, Ben ;
Kaushal, Amit ;
Foo, Lynette C. ;
Zamanian, Jennifer L. ;
Christopherson, Karen S. ;
Xing, Yi ;
Lubischer, Jane L. ;
Krieg, Paul A. ;
Krupenko, Sergey A. ;
Thompson, Wesley J. ;
Barres, Ben A. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (01) :264-278
[8]   Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model [J].
Chen, Lujia ;
Cai, Chunhui ;
Chen, Vicky ;
Lu, Xinghua .
BMC BIOINFORMATICS, 2016, 17
[9]   Trans-species learning of cellular signaling systems with bimodal deep belief networks [J].
Chen, Lujia ;
Cai, Chunhui ;
Chen, Vicky ;
Lu, Xinghua .
BIOINFORMATICS, 2015, 31 (18) :3008-3015
[10]  
Criminisi A, 2003, PROC CVPR IEEE, P721