Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells

被引:133
作者
Phanstiel, Doug [1 ]
Brumbaugh, Justin [4 ]
Berggren, W. Travis [7 ]
Conard, Kevin [7 ]
Feng, Xuezhu [3 ]
Levenstein, Mark E. [7 ]
McAlister, Graeme C. [1 ]
Thomson, James A. [3 ,5 ,6 ,7 ]
Coon, Joshua J. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Anat, Madison, WI 53706 USA
[4] Univ Wisconsin, Integrated Program Biochem, Madison, WI 53706 USA
[5] Univ Wisconsin, Genome Ctr Wisconsin, Madison, WI 53706 USA
[6] Univ Wisconsin, Wisconsin Natl Primate Res Ctr, Madison, WI 53706 USA
[7] WiCell Res Inst, Madison, WI 53706 USA
关键词
electron transfer dissociation; epigenetics; posttranslational modification; histone code; pluripotency;
D O I
10.1073/pnas.0710515105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epigenetic regulation through chromatin is thought to play a critical role in the establishment and maintenance of pluripotency. Traditionally, antibody-based technologies were used to probe for specific posttranslational modifications (PTMs) present on histone tails, but these methods do not generally reveal the presence of multiple modifications on a single-histone tail (combinatorial codes). Here, we describe technology for the discovery and quantification of histone combinatorial codes that is based on chromatography and mass spectrometry. We applied this methodology to decipher 74 discrete combinatorial codes on the tail of histone H4 from human embryonic stem (ES) cells. Finally, we quantified the abundances of these codes as human ES cells undergo differentiation to reveal striking changes in methylation and acetylation patterns. For example, H4R3 methylation was observed only in the presence of H4K20 dimethylation; such context-specific patterning exemplifies the power of this technique.
引用
收藏
页码:4093 / 4098
页数:6
相关论文
共 44 条
  • [11] Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications
    Huang, SM
    Litt, M
    Felsenfeld, G
    [J]. GENES & DEVELOPMENT, 2005, 19 (16) : 1885 - 1893
  • [12] Translating the histone code
    Jenuwein, T
    Allis, CD
    [J]. SCIENCE, 2001, 293 (5532) : 1074 - 1080
  • [13] X-inactivation and histone H4 acetylation in embryonic stem cells
    Keohane, AM
    ONeill, LP
    Belyaev, ND
    Lavender, JS
    Turner, BM
    [J]. DEVELOPMENTAL BIOLOGY, 1996, 180 (02) : 618 - 630
  • [14] Histone code modifications on pluripotential nuclei of reprogrammed somatic cells
    Kimura, H
    Tada, M
    Nakatsuji, N
    Tada, T
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (13) : 5710 - 5720
  • [15] A histone H3 lysine 27 demethylase regulates animal posterior development
    Lan, Fei
    Bayliss, Peter E.
    Rinn, John L.
    Whetstine, Johnathan R.
    Wang, Jordon K.
    Chen, Shuzhen
    Iwase, Shigeki
    Alpatov, Roman
    Issaeva, Irina
    Canaani, Eli
    Roberts, Thomas M.
    Chang, Howard Y.
    Shi, Yang
    [J]. NATURE, 2007, 449 (7163) : 689 - U3
  • [16] Histone deacetylase activity is required for embryonic stem cell differentiation
    Lee, JH
    Hart, SRL
    Skalnik, DG
    [J]. GENESIS, 2004, 38 (01) : 32 - 38
  • [17] Lee MG, 2007, SCIENCE, V318, P447, DOI 10.1126/science.1149042
  • [18] Functions of histone-modifying enzymes in development
    Lin, WC
    Dent, SYR
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (02) : 137 - 142
  • [19] Feeder-independent culture of human embryonic stem cells
    Ludwig, Tenneille E.
    Bergendahl, Veit
    Levenstein, Mark E.
    Yu, Junying
    Probasco, Mitchell D.
    Thomson, James A.
    [J]. NATURE METHODS, 2006, 3 (08) : 637 - 646
  • [20] The key to development: interpreting the histone code?
    Margueron, R
    Trojer, P
    Reinberg, D
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) : 163 - 176