Understanding the Aqueous Solubility of Anthraquinone Sulfonate Salts: The Quest for High Capacity Electrolytes of Redox Flow Batteries

被引:25
作者
Mao, Jiatao [1 ,2 ,3 ]
Ruan, Wenqing [1 ,2 ,4 ]
Chen, Qing [1 ,2 ,3 ,4 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Energy Inst, Hong Kong, Peoples R China
[3] HKUST Shenzhen Res Inst, Shenzhen, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
关键词
ENERGY;
D O I
10.1149/1945-7111/ab7550
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Charge storage in concentrated electrolytes gives redox flow batteries (RFBs) a unique edge in grid-scale energy storage. It also creates a unique challenge in the design of organic molecules as alternatives to expensive vanadium salts. Molecules often come in the form of organic salts, and dissolve by ionic bond breakingand ion solvation, which can hardly be interpreted by "like dissolves like." Here we use anthraquinone sulfonate salts as a model system to investigate factors underlying their aqueous solubility. We synthesize fifteen salts, measure their solubilities with UV-vis spectroscopy, and find that the solubility of the same quinone could change by three orders of magnitude with a change in its counter-cation. The same impact can come from the position and number of the sulfonate groups. We explain the results with the differences in the ion solvation energy and the lattice energy, the latter of which is corroborated by single-crystal X-ray diffraction. We also derive a simple method to semi-quantitatively predict the solubility of a quinone sulfonate salt based on that of a common sulfate salt. The work provides a physical-chemical base for understanding the solubilities of organic salts for the design of high capacity electrolytes for aqueous flow batteries. (c) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
引用
收藏
页数:4
相关论文
共 23 条
[1]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[2]   LATTICE ENERGY OF ORGANIC IONIC-CRYSTALS AND ITS IMPORTANCE IN ANALYSIS OF FEATURES, BEHAVIOR AND REACTIVITY OF SOLID-STATE SYSTEMS [J].
BLAZEJOWSKI, J ;
LUBKOWSKI, J .
JOURNAL OF THERMAL ANALYSIS, 1992, 38 (09) :2195-2210
[3]   Highly water-soluble three-redox state organic dyes as bifunctional analytes [J].
Carretero-Gonzalez, Javier ;
Castillo-Martinez, Elizabeth ;
Armand, Michel .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3521-3530
[4]   Cycling Analysis of a Quinone-Bromide Redox Flow Battery [J].
Chen, Qing ;
Eisenach, Louise ;
Aziz, Michael J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5057-A5063
[5]   A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density [J].
Chen, Qing ;
Gerhardt, Michael R. ;
Hartle, Lauren ;
Aziz, Michael J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5010-A5013
[6]   Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries [J].
Darling, Robert M. ;
Gallagher, Kevin G. ;
Kowalski, Jeffrey A. ;
Ha, Seungbum ;
Brushett, Fikile R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3459-3477
[7]   A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Luo, Jian ;
Liu, T. Leo .
ACS ENERGY LETTERS, 2018, 3 (03) :663-668
[8]   Computational design of molecules for an all-quinone redox flow battery [J].
Er, Suleyman ;
Suh, Changwon ;
Marshak, Michael P. ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2015, 6 (02) :885-893
[9]   Anthraquinone Derivatives in Aqueous Flow Batteries [J].
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Gomez-Bombarelli, Rafael ;
Chen, Qing ;
Marshak, Michael P. ;
Galvin, Cooper J. ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)
[10]   A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries [J].
Hollas, Aaron ;
Wei, Xiaoliang ;
Murugesan, Vijayakumar ;
Nie, Zimin ;
Li, Bin ;
Reed, David ;
Liu, Jun ;
Sprenkle, Vincent ;
Wang, Wei .
NATURE ENERGY, 2018, 3 (06) :508-514