Shift reactors and physical absorption for low-CO2 emission IGCCs

被引:90
作者
Chiesa, P [1 ]
Consonni, S [1 ]
机构
[1] Politecn Milan, Dipartimento Energet, I-20133 Milan, Italy
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 1999年 / 121卷 / 02期
关键词
D O I
10.1115/1.2817120
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Integrated gasification combined cycles (IGCC) exhibit conditions particularly favourable to the sequestration of CO2. The concept pursued in this paper is the generation of syngas low in carbon, where most of the heating value of the coal fuel is carried by hydrogen. Catalytic shift reactors convert most of the CO in the syngas into CO2, which is subsequently removed by physical absorption and then compressed to make it suitable for transport and permanent storage. Energy balances, performance, and cost of electricity are evaluated for two plants based on a Texaco gasifier and a large, heavy-duty gas turbine giving an overall IGCC power output between 350 and 400 MW. In one plant, the raw syngas exiting the gasifier is cooled in a high-temperature, radiative cooler; in the other it is quenched by the injection of liquid water With respect to ''conventional'' Texaco IGCCs, the reduction of specific CO2 emissions by 90 percent reduces LHV efficiency from 5 to 7 percentage points and increases the cost of electricity of about 40 percent. These penalties can be reduced by accepting lower reductions of CO2 emissions. Compared to the semiclosed cycle considered by other authors, where CO2 is the main component of the gas turbine working fluid the plants analyzed here exhibit higher efficiency over the whole range of specific CO2 emissions.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 42 条
  • [1] *ASP TECHN INC, 1996, ASPEN PLUS REL 9 3 R, V2
  • [2] BLACK CR, 1996, P GAS TECHN C SAN FR
  • [3] Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery
    Blok, K
    Williams, RH
    Katofsky, RE
    Hendriks, CA
    [J]. ENERGY, 1997, 22 (2-3) : 161 - 168
  • [4] Bucklin RW, 1984, Energy progress, V4, P137
  • [5] CHIESA P, 1998, 98GT38J ASME
  • [6] Chiesa P, 1993, ASME 1993 INT GAS A, DOI [10.1115/93-GT-223, DOI 10.1115/93-GT-223]
  • [7] CONSONNI S, 1997, 97GT273 ASME
  • [8] Consonni S, 1992, PERFORMANCE PREDICTI
  • [9] ECHT WI, 1998, COMMUNICATION
  • [10] MEMBRANE TECHNOLOGY IN CARBON-DIOXIDE REMOVAL
    FERON, PHM
    JANSEN, AE
    KLAASSEN, R
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1992, 33 (5-8) : 421 - 428