Proposal for quantum rational secret sharing

被引:48
作者
Maitra, Arpita [1 ]
De, Sourya Joyee [2 ]
Paul, Goutam [2 ]
Pal, Asim K. [1 ]
机构
[1] Indian Inst Management Calcutta, Management Informat Syst Grp, Kolkata 700104, W Bengal, India
[2] Indian Stat Inst, RC Bose Ctr Cryptol & Secur, Cryptol & Secur Res Unit, Kolkata 700108, India
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 02期
关键词
INFORMATION;
D O I
10.1103/PhysRevA.92.022305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A rational secret sharing scheme is a game in which each party responsible for reconstructing a secret tries to maximize his or her utility by obtaining the secret alone. Quantum secret sharing schemes, derived either from quantum teleportation or from quantum error correcting code, do not succeed when we assume rational participants. This is because all existing quantum secret sharing schemes consider that the secret is reconstructed by a party chosen by the dealer. In this paper, for the first time, we propose a quantum secret sharing scheme which is resistant to rational parties. The proposed scheme is fair (everyone gets the secret), is correct, and achieves strict Nash equilibrium.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
Abraham I., 2006, P 25 ANN ACM S PRINC, P53, DOI [10.1145/1146381.1146411.8,28, 10.1145/1146381.1146393]
[2]  
[Anonymous], ARXIVQUANTPH0105032V
[3]  
Asharov G, 2011, LECT NOTES COMPUT SC, V6632, P426, DOI 10.1007/978-3-642-20465-4_24
[4]   Utility Dependence in Correct and Fair Rational Secret Sharing [J].
Asharov, Gilad ;
Lindell, Yehuda .
JOURNAL OF CRYPTOLOGY, 2011, 24 (01) :157-202
[5]  
Blakley G. R., 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK), P313, DOI 10.1109/MARK.1979.8817296
[6]   Connection between Bell nonlocality and Bayesian game theory [J].
Brunner, Nicolas ;
Linden, Noah .
NATURE COMMUNICATIONS, 2013, 4
[7]  
Chor B., 1985, 26 ANN S FDN COMP SC, P383
[8]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[9]  
Crépeau C, 2005, LECT NOTES COMPUT SC, V3494, P285
[10]   Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs [J].
Deng, FG ;
Li, XH ;
Li, CY ;
Zhou, P ;
Zhou, HY .
PHYSICAL REVIEW A, 2005, 72 (04)