Cooperative and Reversible Anisotropic Assembly of Gold Nanoparticles by Modulation of Noncovalent Interparticle Interactions

被引:16
作者
Gentili, Denis [1 ]
Ori, Guido [2 ,3 ]
Ortolani, Luca [4 ]
Morandi, Vittorio [4 ]
Cavallini, Massimiliano [1 ]
机构
[1] CNR, ISMN, Via Gobetti 101, I-40129 Bologna, Italy
[2] Univ Strasbourg, IPCMS, UMR 7504, 23,Rue Loess BP 43, F-67034 Strasbourg 2, France
[3] CNRS, 23,Rue Loess BP 43, F-67034 Strasbourg 2, France
[4] CNR, IMM, Via Gobetti 101, I-40129 Bologna, Italy
关键词
anisotropy; nanoparticles; plasmon coupling; reversibility; self-assembly; METAL NANOPARTICLES; AU NANOPARTICLES; CHAIN; STABILITY; ETHANOL;
D O I
10.1002/cnma.201700212
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlled and reversible anisotropic self-assembly of gold nanoparticles (GNPs) is achieved by ligand exchange with concentrations of ligand below that needed for their complete capping, that is, using substoichiometric ligand coverages. A thoughtful rationale of the ligand chemical structure and control over exchange conditions have been pursued to foster a reversible process grounded on the cooperative balance between attractive, and repulsive interactions. The gradual replacement of the electrostatic and steric repulsions between the GNPs with attractive dipolar interactions and enhanced steric repulsions is accomplished by ligand exchange with an oligo (ethylene glycol) alkanethiol. The modulation of interparticle interactions is driven by the extent of ligand substitution and allows the reversible assembly of nanoparticles and tuning of their optical properties.
引用
收藏
页码:874 / 878
页数:5
相关论文
共 35 条
[1]  
[Anonymous], 2008, ANGEW CHEM
[2]   Nonadditivity of nanoparticle interactions [J].
Batista, Carlos A. Silvera ;
Larson, Ronald G. ;
Kotov, Nicholas A. .
SCIENCE, 2015, 350 (6257) :138-+
[3]   Bridging of lateral nanoelectrodes with a metal particle chain [J].
Burghard, M ;
Philipp, G ;
Roth, S ;
von Klitzing, K .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (05) :591-593
[4]   Mechanistic aspects of ligand exchange in Au nanoparticles [J].
Caragheorgheopol, A. ;
Chechik, V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (33) :5029-5041
[5]   Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules [J].
Chen, Fang ;
Li, Xiulan ;
Hihath, Joshua ;
Huang, Zhifeng ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15874-15881
[6]   Thiol-Induced Assembly of Au Nanoparticles into Chain like Structures and Their Fixing by Encapsulation in Silica Shells or Gelatin Microspheres [J].
Cho, Eun Chul ;
Choi, Sung-Wook ;
Camargo, Pedro H. C. ;
Xia, Younan .
LANGMUIR, 2010, 26 (12) :10005-10012
[7]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[8]   Divalent metal nanoparticles [J].
DeVries, Gretchen A. ;
Brunnbauer, Markus ;
Hu, Ying ;
Jackson, Alicia M. ;
Long, Brenda ;
Neltner, Brian T. ;
Uzun, Oktay ;
Wunsch, Benjamin H. ;
Stellacci, Francesco .
SCIENCE, 2007, 315 (5810) :358-361
[9]   Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers [J].
Gentili, Denis ;
Ori, Guido ;
Franchini, Mauro Comes .
CHEMICAL COMMUNICATIONS, 2009, (39) :5874-5876
[10]   Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications [J].
Ghosh, Sujit Kumar ;
Pal, Tarasankar .
CHEMICAL REVIEWS, 2007, 107 (11) :4797-4862