The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems

被引:36
作者
Godlewski, E [1 ]
Le Thanh, KC
Raviart, PA
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
[2] CEA, F-91680 Bruyeres Le Chatel, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 04期
关键词
conservation laws; Riemann problem; boundary value problems; interface coupling; finite volume schemes;
D O I
10.1051/m2an:2005029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.
引用
收藏
页码:649 / 692
页数:44
相关论文
共 35 条
[1]   Computations of compressible multifluids [J].
Abgrall, R ;
Karni, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :594-623
[2]   Godunov-type methods for conservation laws with a flux function discontinuous in space [J].
Adimurthi ;
Jaffré, J ;
Gowda, GDV .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) :179-208
[3]  
AUDUSSE E, 2004, 5261 INR
[4]   A wave propagation method for conservation laws and balance laws with spatially varying flux functions [J].
Bale, DS ;
Leveque, RJ ;
Mitran, S ;
Rossmanith, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03) :955-978
[5]  
BARBERON T, 2002, THESIS U TOULON FRAN
[6]  
COQUEL F, UNPUB NUMERICAL COUP
[7]   HYPERBOLICITY OF THE HYDRODYNAMIC MODEL OF PLASMAS UNDER THE QUASI-NEUTRALITY HYPOTHESIS [J].
CORDIER, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (08) :627-647
[8]  
Després B, 2001, NUMER MATH, V89, P99, DOI 10.1007/s002110000242
[10]   BOUNDARY-CONDITIONS FOR NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS [J].
DUBOIS, F ;
LEFLOCH, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :93-122