Gradient estimates and the first Neumann eigenvalue on manifolds with boundary

被引:19
|
作者
Wang, FY [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann semigroup; gradient estimate; the first Neumann eigenvalue;
D O I
10.1016/j.spa.2005.04.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By studying the local time of reflecting diffusion processes, explicit gradient estimates of the Neumann heat semigroup on non-convex manifolds are derived from a recent derivative formula established by Hsu. As an application, an explicit lower bound of the first Neumann eigenvalue is presented via dimension, radius and bounds of the curvature and the second fundamental form. Finally, some new estimates are also presented for the strictly convex case. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:1475 / 1486
页数:12
相关论文
共 50 条