Imaginary couplings in non-Hermitian coupled-mode theory: Effects on exceptional points of optical resonators

被引:13
|
作者
Takata, Kenta [1 ,2 ]
Roberts, Nathan [2 ,4 ]
Shinya, Akihiko [1 ,2 ]
Notomi, Masaya [1 ,2 ,3 ]
机构
[1] NTT Corp, Nanophoton Ctr, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[3] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[4] Univ Bath, Bath, Avon, England
关键词
PARITY-TIME SYMMETRY; WAVE-GUIDES; LASER; PHYSICS;
D O I
10.1103/PhysRevA.105.013523
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Exceptional point (EP) degeneracies in coupled cavities with gain and loss provide on-chip photonic devices with unconventional features and performance. However, such systems with realistic structures often miss the exact EPs even in simulation, and the mechanism of this EP disruption has yet to be thoroughly identified. Here we extend the coupled-mode theory of one-dimensional non-Hermitian resonator arrays to study the effects of the imaginary part of the intercavity coupling, which is a second-order term and attributed to material amplification, absorption, and radiation. By taking an appropriate gauge for the model, we clarify that the imaginary coupling components have a symmetric form in the effective Hamiltonian and hence represent non-Hermiticity. These additional factors can lift the gain- and loss-based EP degeneracies. However, they are proportional to the sum of the imaginary permittivities for involved cavity pairs. Thus, when the amplification and absorption of adjacent cavities are balanced, their contribution to the imaginary coupling is canceled and the EP singularity can be restored. Radiation-induced imaginary couplings measure the change in net radiation loss by the interference between cavity modes. Their impact on the EP can also be counteracted by small cavity resonance detuning even in loss-biased cases. We show and analyze eligible simulation examples based on photonic crystal nanocavities and highlight the design of an ideal EP degeneracy that is protected by generalized parity-time symmetry and induced by radiation.
引用
收藏
页数:18
相关论文
共 44 条
  • [1] Sensing Applications of Exceptional Points in Non-Hermitian Optical Systems
    Zhang Xiangyu
    Kang Ming
    Liu Huigang
    Liu Haitao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (03):
  • [2] Exceptional points and non-Hermitian photonics at the nanoscale
    Li, Aodong
    Wei, Heng
    Cotrufo, Michele
    Chen, Weijin
    Mann, Sander
    Ni, Xiang
    Xu, Bingcong
    Chen, Jianfeng
    Wang, Jian
    Fan, Shanhui
    Qiu, Cheng-Wei
    Alu, Andrea
    Chen, Lin
    NATURE NANOTECHNOLOGY, 2023, 18 (07) : 706 - 720
  • [3] Branching High-Order Exceptional Points in Non-Hermitian Optical Systems
    Tschernig, Konrad
    Busch, Kurt
    Christodoulides, Demetrios N.
    Perez-Leija, Armando
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [4] Crossing exceptional points in non-Hermitian quantum systems
    Klauck, Friederike U. J.
    Heinrich, Matthias
    Szameit, Alexander
    Wolterink, Tom A. W.
    SCIENCE ADVANCES, 2025, 11 (02):
  • [5] Extended exceptional points in projected non-Hermitian systems
    Wang, Xiao-Ran
    Yang, Fei
    Tong, Xian-Qi
    Yu, Xiao-Jie
    Cao, Kui
    Kou, Su-Peng
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [6] Floquet exceptional points and chirality in non-Hermitian Hamiltonians
    Longhi, Stefano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
  • [7] Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points
    Li, Zhipeng
    Cao, Guangtao
    Li, Chenhui
    Dong, Shaohua
    Deng, Yan
    Liu, Xinke
    Ho, John S.
    Qiu, Cheng-Wei
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2021, 171 : 1 - 20
  • [8] Exceptional points in non-Hermitian systems: Applications and recent developments
    Meng, Haiyu
    Ang, Yee Sin
    Lee, Ching Hua
    APPLIED PHYSICS LETTERS, 2024, 124 (06)
  • [9] Optical lattices with higher-order exceptional points by non-Hermitian coupling
    Zhou, Xingping
    Gupta, Samit Kumar
    Huang, Zhong
    Yan, Zhendong
    Zhan, Peng
    Chen, Zhuo
    Lu, Minghui
    Wang, Zhenlin
    APPLIED PHYSICS LETTERS, 2018, 113 (10)
  • [10] Classification of Exceptional Points and Non-Hermitian Topological Semimetals
    Kawabata, Kohei
    Bessho, Takumi
    Sato, Masatoshi
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)