Applications of Microlocal Analysis in Inverse Problems

被引:2
作者
Salo, Mikko [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
inverse problems; microlocal analysis; radon transform; Dirichlet-to-Neumann map; Gel'fand problem; calderon problem; BOUNDARY;
D O I
10.3390/math8071184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note reviews certain classical applications of microlocal analysis in inverse problems. The text is based on lecture notes for a postgraduate level minicourse on applications of microlocal analysis in inverse problems, given in Helsinki and Shanghai in June 2019.
引用
收藏
页数:27
相关论文
共 29 条
  • [1] [Anonymous], 1982, MAA Studies in Mathematics
  • [2] Dyatlov S., 2019, MATH THEORY SCATTERI
  • [3] Semiclassical measures on hyperbolic surfaces have full support
    Dyatlov, Semyon
    Jin, Long
    [J]. ACTA MATHEMATICA, 2018, 220 (02) : 297 - 339
  • [4] Evans LC., 2010, Partial Differential Equations, V2
  • [5] Feldman J., CALDERON PROBLEM AN
  • [6] Grubb G., 1996, Functional calculus of pseudodifferential boundary problems, V2nd Ed.
  • [7] Guillemin Victor., 1975, SOME REMARKS INTEGRA
  • [8] Helgason S., 1999, The Radon transform, Vvol 2, DOI DOI 10.1007/978-1-4757-1463-0
  • [9] The global non-linear stability of the Kerr-de Sitter family of black holes
    Hintz, Peter
    Vasy, Andras
    [J]. ACTA MATHEMATICA, 2018, 220 (01) : 1 - 206
  • [10] Hormander, 1983, ANAL LINEAR PARTIAL