One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

被引:29
作者
Gopi, Chandu V. V. Muralee [1 ]
Somasekha, A. [2 ]
Reddy, Araveeti Eswar [1 ]
Kim, Soo-Kyoung [3 ]
Kim, Hee-Je [1 ]
机构
[1] Pusan Natl Univ, Sch Elect & Comp Engn, Busandaehak Ro 63 Beon Gil, Busan 46241, South Korea
[2] Priyadarshini Inst Technol & Sci, Dept Elect & Commun Engn, Guntur 522201, Andhra Pradesh, India
[3] Gyeongnam Technopk, 22 Changwon Daero,18 Beon Gil, Changwonsi 51395, Gyeongsangnam D, South Korea
关键词
Composite materials; Fe2O3@LiCoO2; Supercapacitor; Nanoflakes; HIGH-PERFORMANCE SUPERCAPACITOR; ELECTROCHEMICAL CAPACITORS;
D O I
10.1016/j.apsusc.2017.11.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 Fg(-1) at 5 mA cm(-2) and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm(-2). The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 21 条
[1]   Conducting Polymers for Pseudocapacitive Energy Storage [J].
Bryan, Aimee M. ;
Santino, Luciano M. ;
Lu, Yang ;
Acharya, Shinjita ;
D'Arcy, Julio M. .
CHEMISTRY OF MATERIALS, 2016, 28 (17) :5989-5998
[2]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[3]  
2-A
[4]  
Gopi C. V., 2016, RSC ADV, V6
[5]   Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors [J].
Gopi, Chandu V. V. Muralee ;
Ravi, Seenu ;
Rao, S. Srinivasa ;
Reddy, Araveeti Eswar ;
Kim, Hee-Je .
SCIENTIFIC REPORTS, 2017, 7
[6]   A comprehensive review on synthesis methods for transition-metal oxide nanostructures [J].
Guo, Ting ;
Yao, Ming-Shui ;
Lin, Yuan-Hua ;
Nan, Ce-Wen .
CRYSTENGCOMM, 2015, 17 (19) :3551-3585
[7]   Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors [J].
Hu, Yating ;
Guan, Cao ;
Ke, Qingqing ;
Yow, Zhen Feng ;
Cheng, Chuanwei ;
Wang, John .
CHEMISTRY OF MATERIALS, 2016, 28 (20) :7296-7303
[8]   Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core shell arrays on Ni foam for high-performance supercapacitors [J].
Kuang, Min ;
Liu, Xiao Ying ;
Dong, Fan ;
Zhang, Yu Xin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (43) :21528-21536
[9]   Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid-State Electrolyte [J].
Li, Bing ;
Gu, Peng ;
Feng, Yongcheng ;
Zhang, Guangxun ;
Huang, Kesheng ;
Xue, Huaiguo ;
Pang, Huan .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (12)
[10]   N,S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors [J].
Li, Xinran ;
Ding, Shiyuan ;
Xiao, Xiao ;
Shao, Jinying ;
Wei, Jilei ;
Pang, Huan ;
Yu, Yan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12774-12781