Prolongation and stability of Zeno solutions to hybrid dynamical systems

被引:9
|
作者
Dashkovskiy, Sergey [1 ]
Feketa, Petro [2 ]
机构
[1] Univ Wurzburg, Wurzburg, Germany
[2] Univ Appl Sci Erfurt, Erfurt, Germany
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
hybrid dynamical system; Zeno behavior; asymptotic stability; TO-STATE STABILITY;
D O I
10.1016/j.ifacol.2017.08.840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper proposes a framework for the construction of solutions to a hybrid dynamical system that exhibit Zeno behavior. A new approach that enables solution to be prolonged after reaching its Zeno time is developed. It allows for a comprehensive stability analysis and asymptotic behavior characterization of such solutions. The results are applicable to a wide class of hybrid systems and match with practical experience of simulation of real-world phenomena. Moreover they are potentially useful for applications to interconnections of hybrid systems. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3429 / 3434
页数:6
相关论文
共 50 条
  • [1] Dynamical systems revisited: Hybrid systems with Zeno executions
    Zhang, J
    Johansson, KH
    Lygeros, J
    Sastry, S
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2000, 1790 : 451 - 464
  • [2] Stability of Zeno Equilibria in Lagrangian Hybrid Systems
    Or, Yizhar
    Ames, Aaron D.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2770 - 2775
  • [3] Stability and Completion of Zeno Equilibria in Lagrangian Hybrid Systems
    Or, Yizhar
    Ames, Aaron D.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (06) : 1322 - 1336
  • [4] Zeno hybrid systems
    Zhang, J
    Johansson, KH
    Lygeros, J
    Sastry, S
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (05) : 435 - 451
  • [5] Generalized solutions to hybrid dynamical systems
    Sanfelice, Ricardo G.
    Goebel, Rafal
    Teel, Andrew R.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 699 - 724
  • [6] Stability theory for hybrid dynamical systems
    Ye, H
    Michel, AN
    Hou, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) : 461 - 474
  • [7] Incremental Stability of Hybrid Dynamical Systems
    Biemond, J. J. Benjamin
    Postoyan, Romain
    Heemels, W. P. Maurice H.
    van de Wouw, Nathan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4094 - 4109
  • [8] Hybrid dynamical systems: Stability and chaos
    Savkin, AV
    Matveev, AS
    PERSPECTIVES IN ROBUST CONTROL, 2001, 268 : 297 - 309
  • [9] On simulation of zeno hybrid systems
    Oltean, Virginia Ecaterina
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2007, 52 (02): : 229 - 239
  • [10] Non-Standard Zeno-Free Simulation Semantics for Hybrid Dynamical Systems
    Aljarbouh, Ayman
    VERIFICATION AND EVALUATION OF COMPUTER AND COMMUNICATION SYSTEMS, VECOS 2019, 2019, 11847 : 16 - 31