Design and commissioning of an In-Air Coronagraph Testbed in the HCIT facility at NASA's Jet Propulsion Laboratory

被引:6
作者
Baxter, Wesley [1 ]
Potier, Axel [1 ]
Ruane, Garreth [1 ]
Prada, Camilo Mejia [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
来源
TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS X | 2021年 / 11823卷
基金
美国国家航空航天局;
关键词
coronagraph; deformable mirror; contrast; exoplanets; direct imaging;
D O I
10.1117/12.2601432
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
After completing its duty in the vacuum chamber at the High Contrast Imaging Testbed (HCIT) facility at NASA's Jet Propulsion Laboratory, the General Purpose Coronagraph Testbed (GPCT) has been retrofitted as the In-Air Coronagraph Testbed (IACT), with the purpose of verifying Boston Micromachines (BMC) 50x50 MEMS deformable mirrors (DM) performance by comparing the contrast achieved before and after random vibration testing. The testbed is configured as a vortex coronagraph, with one MEMS DM in the pupil plane to create a one-sided dark hole in monochromatic light. An environmentally isolating enclosure, based on the enclosure design previously used on Caltech's High Contrast Spectroscopy Testbed (HCST), minimizes air turbulence and other dynamic wavefront error sources. A smaller internal enclosure maintains the low relative humidity (<30%) necessary for safe operation of the MEMS DM. We expect this testbed to achieve 10(-8) contrast, and will use this contrast level as a baseline to assess survival or failure of MEMS DMs during vibration testing. In this presentation, we will present an overview of the design of the IACT, commissioning results, and plans for upcoming DM tests in preparation for launch of future space telescopes with coronagraph instruments.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
Baudoz P., 2018, P SPIE, V10706
[2]   Microelectromechanical deformable mirror development for high-contrast imaging, part 1: miniaturized, flight-capable control electronics [J].
Bendek, Eduardo ;
Ruane, Garreth ;
Prada, Camilo Mejia ;
Mendillo, Christopher B. ;
Riggs, A. J. Eldorado ;
Serabyn, Eugene .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (04)
[3]  
Desai N., 2021, Proceedings of the SPIE, V11823, p118230Q
[4]  
Gaudi B. S., 2019, The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
[5]  
Giveon A ., 2009, P SPIE, V7440
[6]  
Groff T. D., 2015, METHODS LIMITATIONS, V2
[7]   High-contrast spectroscopy testbed for Segmented Telescopes: instrument overview and development progress [J].
Jovanovic, N. ;
Ruane, G. ;
Echeverri, D. ;
Delorme, J. R. ;
Mawet, D. ;
Fucik, J. ;
Wallace, J. K. ;
Coker, C. ;
Delacroix, A. ;
Levraud, N. ;
Sayson, J. D. Llop ;
Wang, J. ;
Riddle, R. ;
Millar-Blanchaer, M. A. .
GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII, 2018, 10702
[8]   Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration [J].
Mawet, D. ;
Serabyn, E. ;
Liewer, K. ;
Hanot, Ch. ;
McEldowney, S. ;
Shemo, D. ;
O'Brien, N. .
OPTICS EXPRESS, 2009, 17 (03) :1902-1918
[9]  
Meeker S. R., 2021, P SPIE, V11823
[10]   Design description and commissioning performance of a stable coronagraph technology development testbed for direct imaging of Earth-like exoplanets [J].
Patterson, Keith D. ;
Seo, Byoung-Joon ;
Balasubramanian, Kunjithapatham ;
Chui, Talso ;
Crill, Brendan ;
Gill, John ;
Kern, Brian ;
Lam, Ray ;
Marx, David ;
Moody, Dwight ;
Prada, Camilo Mejia ;
Ruane, Garreth ;
Rupp, Jordan ;
Shaw, John ;
Shi, Fang ;
Siegler, Nicholas ;
Tang, Hong ;
Trauger, John ;
White, Victor ;
Wilson, Daniel ;
Yee, Karl ;
Zimmer, Robert .
TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS IX, 2019, 11117