Analysis and applications of the exponential time differencing schemes and their contour integration modifications

被引:101
作者
Du, Q [1 ]
Zhu, WX [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
time integration schemes; exponential time differencing; contour integrals; Fourier spectral methods; stability; Fourier analysis; energy estimates; maximum principle; Allen-Cahn equations; phase transitions;
D O I
10.1007/s10543-005-7141-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study in this paper the exponential time differencing (ETD) schemes and their modifications via complex contour integrations for the numerical solutions of parabolic type equations. We illustrate that the contour integration shares an added advantage of improving the stability of the time integration. In addition, we demonstrate the effectiveness of the ETD type schemes through the numerical solution of a typical problem in phase field modeling and through the comparisons with other existing methods.
引用
收藏
页码:307 / 328
页数:22
相关论文
共 18 条
[1]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[2]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[3]  
Caginalp G., 1989, Applied Math. Letters, V2, P117
[4]   Applications of semi-implicit Fourier-spectral method to phase field equations [J].
Chen, LQ ;
Shen, J .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) :147-158
[5]   Modeling solid-state phase transformations and microstructure evolution [J].
Chen, LQ ;
Wolverton, C ;
Vaithyanathan, V ;
Liu, ZK .
MRS BULLETIN, 2001, 26 (03) :197-202
[6]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[7]  
Du Q, 2004, J COMPUT MATH, V22, P200
[8]   Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum [J].
Gear, CW ;
Kevrekidis, IG .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04) :1091-1106
[9]  
GEAR W, 2003, IN PRESS COMMUNICATI
[10]   A parallel 3D dendritic growth simulator using the phase-field method [J].
George, WL ;
Warren, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 177 (02) :264-283