VARIATIONAL APPROACHES TO CONSERVATION LAWS FOR A NONLINEAR EVOLUTION EQUATION WITH TIME DEPENDENT COEFFICIENTS

被引:5
作者
Johnpillai, A. G. [1 ]
Khalique, C. M. [1 ]
机构
[1] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, ZA-2735 Mmabatho, South Africa
关键词
Modified KdV equation; Lie point symmetries; adjoint equation; partial Lagrangian; partial Noether operators; conservation laws; PARTIAL-DIFFERENTIAL-EQUATIONS; DIRECT CONSTRUCTION METHOD; SYMMETRIES;
D O I
10.2989/16073606.2011.594238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The conservation laws of a nonlinear evolution equation of time dependent variable coefficients of damping and dispersion is studied. The equation under consideration is not derivable from a variational principle which means that one cannot appeal to the Noether theorem to determine the conservation laws. We utilize the new conservation theorem (N.H. Ibragimov, [8]) and the partial Lagrangian approach (A.H. Kara, F.M. Mahomed, [13]) to construct local, and infinite number of nonlocal conservation laws (due to the transformation of the dependent variable) of the underlying equation.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 23 条
[11]   Lie group classification and invariant solutions of mKdV equation with time-dependent coefficients [J].
Johnpillai, A. G. ;
Khalique, C. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1207-1215
[12]   Noether-type symmetries and conservation laws via partial Lagrangians [J].
Kara, A. H. ;
Mahomed, F. A. .
NONLINEAR DYNAMICS, 2006, 45 (3-4) :367-383
[13]   Relationship between symmetries and conservation laws [J].
Kara, AH ;
Mahomed, FM .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (01) :23-40
[14]   Soil water redistribution and extraction flow models: Conservation laws [J].
Khalique, C. Masood ;
Mahomed, Fazal M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2021-2025
[15]  
Laplace P., 1966, Celestial Mechanics
[16]  
Momoniat E, 2001, INT J NONLINEAR MECH, V36, P879, DOI 10.1016/S0020-7462(00)00051-2
[17]   Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics [J].
Naz, R. ;
Mahomed, F. M. ;
Mason, D. P. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :212-230
[18]   MILESTONES IN MATHEMATICAL PHYSICS - INVARIANT VARIATION PROBLEMS [J].
NOETHER, E .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1971, 1 (03) :186-+
[19]  
Olver PJ., 2000, Applications of Lie Groups to Differential Equations
[20]   UBER DIE ZUORDNUNG ZWISCHEN INVARIANZEIGENSCAFTEN UND ERHALTUNGSSATZEN [J].
STEUDEL, H .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1962, A 17 (02) :129-&