The pressure metric for Anosov representations

被引:80
作者
Bridgeman, Martin [1 ]
Canary, Richard [2 ]
Labourie, Francois [3 ]
Sambarino, Andres [4 ]
机构
[1] Boston Coll, Chestnut Hill, MA 02467 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Univ Nice Sophia Antipolis, Lab Jean Dieudonne, UMR 7351, F-06000 Nice, France
[4] Univ Paris 11, Lab Math, CNRS, F-91405 Orsay, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ERGODIC-THEORY; PROJECTIVE-STRUCTURES; TOPOLOGICAL-ENTROPY; HAUSDORFF DIMENSION; SYMBOLIC DYNAMICS; LIMIT-SETS; DEFORMATION; ANALYTICITY; EXTENSION; RIGIDITY;
D O I
10.1007/s00039-015-0333-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the thermodynamic formalism, we introduce a notion of intersection for projective Anosov representations, show analyticity results for the intersection and the entropy, and rigidity results for the intersection. We use the renormalized intersection to produce an Out-invariant Riemannian metric on the smooth points of the deformation space of irreducible, generic, projective Anosov representations of a word hyperbolic group into . In particular, we produce mapping class group invariant Riemannian metrics on Hitchin components which restrict to the Weil-Petersson metric on the Fuchsian loci. Moreover, we produce -invariant metrics on deformation spaces of convex cocompact representations into and show that the Hausdorff dimension of the limit set varies analytically over analytic families of convex cocompact representations into any rank 1 semi-simple Lie group.
引用
收藏
页码:1089 / 1179
页数:91
相关论文
共 71 条
[1]  
ABRAMOV LM, 1959, DOKL AKAD NAUK SSSR+, V128, P873
[2]  
Anderson JW, 1997, ANN ACAD SCI FENN-M, V22, P349
[3]  
[Anonymous], PREPRINT
[4]  
[Anonymous], PREPRINT
[5]  
[Anonymous], MATH USSR IZVESTIJA
[6]  
[Anonymous], TATA I FUND RES STUD
[7]  
[Anonymous], GRADUATE TEXT MATH
[8]  
[Anonymous], MEM AM MATH SOC
[9]  
[Anonymous], COMMUNICATION
[10]  
[Anonymous], PREPRINT