A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations

被引:25
作者
George, Santhosh [2 ]
Nair, A. Thamban [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras, Tamil Nadu, India
[2] Coll Arts Sci & Commerce, Dept Math, Sanquilim, Goa, India
关键词
nonlinear ill-posed equations; Newton-Lavrentiev regularization; Hammerstein equation; adaptive choice;
D O I
10.1016/j.jco.2007.08.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, a new iterative method, called Newton-Lavrentiev regularization (NLR) method, was considered by George (2006) for regularizing a nonlinear ill-posed Hammerstein-type operator equation in Hilbert spaces. In this paper we introduce a modified form of the NLR method and derive order optimal error bounds by choosing the regularization parameter according to the adaptive scheme considered by Pereverzev and Schock (2005). (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 240
页数:13
相关论文
共 15 条
[1]   SOME INVERSE PROBLEMS FOR A NONLINEAR PARABOLIC EQUATION CONNECTED WITH CONTINUOUS-CASTING OF STEEL - STABILITY ESTIMATES AND REGULARIZATION [J].
BINDER, A ;
ENGL, HW ;
VESSELLA, S .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (7-8) :643-671
[2]  
Engl H.W., 1990, INVERSE METHODS ACTI, P92
[3]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[4]  
Engl HW, 1993, REGULARIZATION INVER
[5]   AN A-POSTERIORI PARAMETER CHOICE FOR SIMPLIFIED REGULARIZATION OF ILL-POSED PROBLEMS [J].
GEORGE, S ;
NAIR, MT .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 16 (03) :392-399
[6]   On a generalized Arcangeli's method for Tikhonov regularization with inexact data [J].
George, S ;
Nair, MT .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (7-8) :773-787
[7]  
George S., 2006, J INVERSE ILL-POSE P, V14, P573
[8]   ARCANGELI METHOD FOR FREDHOLM EQUATIONS OF THE 1ST KIND [J].
GROETSCH, CW ;
GUACANEME, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (02) :256-260
[9]  
Guacaneme J.E., 1990, ROSTAK MATH K, V42, P59
[10]  
KIRSCH A, 1996, INTRO MATHEMATICAL T