Third quantization: a general method to solve master equations for quadratic open Fermi systems

被引:387
作者
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Dept Phys, FMF, SI-1000 Ljubljana, Slovenia
关键词
D O I
10.1088/1367-2630/10/4/043026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states (NESS) and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbour Heisenberg XY spin-1/2 chain in a transverse magnetic field.
引用
收藏
页数:23
相关论文
共 55 条
[1]  
Alicki R., 2007, QUANTUM DYNAMICAL SE
[2]   ON THE DYNAMICS AND ERGODIC PROPERTIES OF THE XY MODEL [J].
ARAKI, H ;
BAROUCH, E .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (02) :327-345
[3]   ON THE XY-MODEL ON 2-SIDED INFINITE CHAIN [J].
ARAKI, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :277-296
[4]  
Aschbacher W, 2006, LECT NOTES MATH, V1882, P1
[5]  
BENENETI G, 2004, PRINCIPLES QUANTUM C, V1
[6]  
BENETTI G, 2007, PRINCIPLES QUANTUM C, V2
[7]  
Breuer H-P., 2007, The Theory of Open Quantum Systems
[8]  
CASATI G, 2007, PREPRINT 07103500V1
[9]   Heat transport in harmonic lattices [J].
Dhar, Abhishek ;
Roy, Dibyendu .
JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (04) :805-824
[10]   Emergence of diffusion in finite quantum systems [J].
Esposito, M ;
Gaspard, P .
PHYSICAL REVIEW B, 2005, 71 (21)