Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity

被引:949
作者
Zhang, Jizhen [1 ]
Kong, Na [2 ]
Uzun, Simge [3 ,4 ]
Levitt, Ariana [3 ,4 ]
Seyedin, Shayan [1 ]
Lynch, Peter A. [1 ]
Qin, Si [1 ]
Han, Meikang [3 ,4 ]
Yang, Wenrong [2 ]
Liu, Jingquan [5 ]
Wang, Xungai [1 ]
Gogotsi, Yury [3 ,4 ]
Razal, Joselito M. [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] Deakin Univ, Sch Life & Environm Sci, Geelong, Vic 3216, Australia
[3] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[4] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[5] Qingdao Univ, Coll Mat Sci & Engn, Inst Graphene Appl Technol Innovat, Qingdao 266071, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
aligned films; electrical conductivity; electromagnetic interference shielding; MXene films; TITANIUM CARBIDE MXENE; INTERCALATION; DISPERSIONS; ULTRASTRONG; CAPACITANCE;
D O I
10.1002/adma.202001093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Free-standing films that display high strength and high electrical conductivity are critical for flexible electronics, such as electromagnetic interference (EMI) shielding coatings and current collectors for batteries and supercapacitors. 2D Ti3C2Tx flakes are ideal candidates for making conductive films due to their high strength and metallic conductivity. It is, however, challenging to transfer those outstanding properties of single MXene flakes to macroscale films as a result of the small flake size and relatively poor flake alignment that occurs during solution-based processing. Here, a scalable method is shown for the fabrication of strong and highly conducting pure MXene films containing highly aligned large MXene flakes. These films demonstrate record tensile strength up to approximate to 570 MPa for a 940 nm thick film and electrical conductivity of approximate to 15 100 S cm(-1) for a 214 nm thick film, which are both the highest values compared to previously reported pure Ti3C2Tx films. These films also exhibit outstanding EMI shielding performance (approximate to 50 dB for a 940 nm thick film) that exceeds other synthetic materials with comparable thickness. MXene films with aligned flakes provide an effective route for producing large-area, high-strength, and high-electrical-conductivity MXene-based films for future electronic applications.
引用
收藏
页数:9
相关论文
共 55 条
[1]   H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANOSCALE, 2016, 8 (14) :7580-7587
[2]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[3]  
Anasori B., 2019, 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications
[4]   Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor [J].
Anothumakkool, Bihag ;
Soni, Roby ;
Bhange, Siddheshwar N. ;
Kurungot, Sreekumar .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1339-1347
[5]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[6]   Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties [J].
Cao, Wen-Tao ;
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Zhang, Yong-Gang ;
Jiang, Ying-Ying ;
Ma, Ming-Guo ;
Chen, Feng .
ACS NANO, 2018, 12 (05) :4583-4593
[7]   Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength [J].
Chen, Hongwu ;
Wen, Yeye ;
Qi, Yingyi ;
Zhao, Qian ;
Qu, Liangti ;
Li, Chun .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (05)
[8]   Size Fractionation of Graphene Oxide Sheets via Filtration through Track-Etched Membranes [J].
Chen, Ji ;
Li, Yingru ;
Huang, Liang ;
Jia, Naer ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2015, 27 (24) :3654-3660
[9]   Electrophoretic Deposition of Two-Dimensional Titanium Carbide (MXene) Thick Films [J].
Collini, Pieralberto ;
Kota, Sankalp ;
Dillon, Andrew D. ;
Barsoum, Michel W. ;
Fafarman, Aaron T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) :D573-D580
[10]   Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals [J].
Deysher, Grayson ;
Shuck, Christopher Eugene ;
Hantanasirisakul, Kanit ;
Frey, Nathan C. ;
Foucher, Alexandre C. ;
Maleski, Kathleen ;
Sarycheva, Asia ;
Shenoy, Vivek B. ;
Stach, Eric A. ;
Anasori, Babak ;
Gogotsi, Yury .
ACS NANO, 2020, 14 (01) :204-217