Investigation of Early Warning Indexes in a Three-Dimensional Chaotic System with Zero Eigenvalues

被引:6
作者
Chen, Lianyu [1 ]
Nazarimehr, Fahimeh [2 ]
Jafari, Sajad [2 ,3 ]
Tlelo-Cuautle, Esteban [4 ]
Hussain, Iqtadar [5 ]
机构
[1] Jiangsu Univ Technol, Sch Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
[2] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[3] Amirkabir Univ Technol, Hlth Technol Res Inst, 350 Hafez Ave,Valiasr Sq, Tehran 1591634311, Iran
[4] INAOE, Dept Elect, Puebla 72840, Mexico
[5] Qatar Univ, Dept Math Stat & Phys, Doha 2713, Qatar
关键词
chaotic system; shannon entropy; kolmogorov-sinai entropy; bifurcation point;
D O I
10.3390/e22030341
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rare three-dimensional chaotic system with all eigenvalues equal to zero is proposed, and its dynamical properties are investigated. The chaotic system has one equilibrium point at the origin. Numerical analysis shows that the equilibrium point is unstable. Bifurcation analysis of the system shows various dynamics in a period-doubling route to chaos. We highlight that from the evaluation of the entropy, bifurcation points can be predicted by identifying early warning signals. In this manner, bifurcation points of the system are analyzed using Shannon and Kolmogorov-Sinai entropy. The results are compared with Lyapunov exponents.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Design of multiwing-multiscroll grid compound chaotic system and its circuit implementation [J].
Ai, Wei ;
Sun, Kehui ;
Fu, Yuanli .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (06)
[2]   Design new chaotic maps based on dimension expansion [J].
Alamodi, Abdulaziz O. A. ;
Sun, Kehui ;
Ai, Wei ;
Chen, Chen ;
Peng, Dong .
CHINESE PHYSICS B, 2019, 28 (02)
[3]  
[Anonymous], 1987, Principles and practice of information theory
[4]   Kolmogorov-Sinai entropy from recurrence times [J].
Baptista, M. S. ;
Ngamga, E. J. ;
Pinto, Paulo R. F. ;
Brito, Margarida ;
Kurths, J. .
PHYSICS LETTERS A, 2010, 374 (09) :1135-1140
[5]  
Dakos V, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0041010, 10.1371/journal.pone.0045586]
[6]   Bifurcation Analysis and Chaos Control of a Second-Order Exponential Difference Equation [J].
Din, Q. ;
Elabbasy, E. M. ;
Elsadany, A. A. ;
Ibrahim, S. .
FILOMAT, 2019, 33 (15) :5003-5022
[7]   Bifurcation Analysis and Chaos Control in a Second-Order Rational Difference Equation [J].
Din, Qamar ;
Elsadany, A. A. ;
Ibrahim, Samia .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (01) :53-68
[8]   Bifurcation analysis of chaotic geomagnetic field model [J].
Elsonbaty, Amr ;
Elsadany, A. A. .
CHAOS SOLITONS & FRACTALS, 2017, 103 :325-335
[9]   Is type 1 diabetes a chaotic phenomenon? [J].
Ginoux, Jean-Marc ;
Ruskeepaa, Heikki ;
Perc, Matjaz ;
Naeck, Roomila ;
Di Costanzo, Veronique ;
Bouchouicha, Moez ;
Fnaiech, Farhat ;
Sayadi, Mounir ;
Hamdi, Takoua .
CHAOS SOLITONS & FRACTALS, 2018, 111 :198-205
[10]   Simple Chaotic Flow with Circle and Square Equilibrium [J].
Gotthans, Tomas ;
Sprott, Julien Clinton ;
Petrzela, Jiri .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (08)