Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network

被引:15
作者
Chen, Xin [1 ,2 ]
Zheng, Yuanjie [1 ,3 ,4 ,5 ]
Dong, Changxu [1 ]
Song, Sutao [1 ,3 ,4 ,5 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China
[3] Shandong Normal Univ, Univ Shandong, Key Lab Intelligent Comp & Informat Secur, Jinan, Peoples R China
[4] Shandong Normal Univ, Shandong Prov Key Lab Novel Distributed Comp Soft, Jinan, Peoples R China
[5] Shandong Normal Univ, Inst Biomed Sci, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
epilepsy EEG signal; seizures prediction; multichannel relationship; graph convolutional network; space-time prediction; EPILEPTIC SEIZURES; EEGS;
D O I
10.3389/fninf.2021.605729
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In terms of seizure prediction, how to fully mine relational data information among multiple channels of epileptic EEG? This is a scientific research subject worthy of further exploration. Recently, we propose a multi-dimensional enhanced seizure prediction framework, which mainly includes information reconstruction space, graph state encoder, and space-time predictor. It takes multi-channel spatial relationship as breakthrough point. At the same time, it reconstructs data unit from frequency band level, updates graph coding representation, and explores space-time relationship. Through experiments on CHB-MIT dataset, sensitivity of the model reaches 98.61%, which proves effectiveness of the proposed model.
引用
收藏
页数:11
相关论文
共 26 条
[1]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[2]   A Convolutional Gated Recurrent Neural Network for Epileptic Seizure Prediction [J].
Affes, Abir ;
Mdhaffar, Afef ;
Triki, Chahnez ;
Jmaiel, Mohamed ;
Freisleben, Bernd .
HOW AI IMPACTS URBAN LIVING AND PUBLIC HEALTH, ICOST 2019, 2019, 11862 :85-96
[3]   Epileptic seizures and epilepsy [J].
Ahmed, SN .
EPILEPSIA, 2005, 46 (10) :1700-1701
[4]   Epileptic seizures detection in EEGs blending frequency domain with information gain technique [J].
Al Ghayab, Hadi Ratham ;
Li, Yan ;
Siuly, Siuly ;
Abdulla, Shahab .
SOFT COMPUTING, 2019, 23 (01) :227-239
[5]  
Alotaiby TN, 2015, 2015 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH (ICTRC), P152, DOI 10.1109/ICTRC.2015.7156444
[6]  
Cho K., 2014, ARXIV14061078, DOI 10.3115/v1/D14-1179
[7]   Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and Hidden Markov Model [J].
Dash, Deba Prasad ;
Kolekar, Maheshkumar H. ;
Jha, Kamlesh .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
[8]  
Defferrard M, 2016, ADV NEUR IN, V29
[9]   New feature extraction approach for epileptic EEG signal detection using time-frequency distributions [J].
Guerrero-Mosquera, Carlos ;
Malanda Trigueros, Armando ;
Iriarte Franco, Jorge ;
Navia-Vazquez, Angel .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (04) :321-330
[10]  
Holmes G.L., 1984, ELECTROEN CLIN NEURO