Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials

被引:68
作者
Li, Hongyuan [1 ,2 ]
Ying, Zhe [1 ,2 ]
Lyu, Bosai [1 ,2 ]
Deng, Aolin [1 ,2 ]
Wang, Lele [1 ,2 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [3 ]
Shi, Zhiwen [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Minist Educ, Key Lab Artificial Struct & Quantum Control, Shanghai 200240, Peoples R China
[2] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
Scanning probe lithography; electrode-free local anodic oxidation; high-frequency ac voltage; graphene; low-dimensional materials; FORCE MICROSCOPY; LITHOGRAPHY; MECHANISM; KINETICS; SILICON;
D O I
10.1021/acs.nanolett.8b04166
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scanning probe lithography based on local anodic oxidation (LAO) provides a robust and general nanolithography tool for a wide range of applications. Its practical use, however, has been strongly hampered due to the requirement of a prefabricated microelectrode to conduct the driving electrical current. Here we report a novel electrode-free LAO technique, which enables in situ patterning of as-prepared low-dimensional materials and heterostructures with great flexibility and high precision. Unlike conventional LAO driven by a direct current, the electrode-free LAO is driven by a high-frequency (>10 kHz) alternating current applied through capacitive coupling, which eliminates the need of a contacting electrode and can be used even for tailoring insulating materials. Using this technique, we demonstrated flexible nanolithography of graphene, hexagonal boron nitride, and carbon nanotubes on insulating substrates with similar to 10-nanometer precision. In addition, the electrode-free LAO exhibits high etching quality without oxide residues left. Such an in situ and electrode-free nanolithography with high etching quality opens up new opportunities for fabricating ultraclean nanoscale devices and heterostructures with great flexibility.
引用
收藏
页码:8011 / 8015
页数:5
相关论文
共 30 条
[1]  
Albisetti E, 2016, NAT NANOTECHNOL, V11, P545, DOI [10.1038/NNANO.2016.25, 10.1038/nnano.2016.25]
[2]  
[Anonymous], 1980, ELECTROCHEMICAL METH
[3]   DOUBLE-LAYER REVIEW [J].
BLOCK, LP .
ASTROPHYSICS AND SPACE SCIENCE, 1978, 55 (01) :59-83
[4]   Nanoscale Lithography on Mono layer Graphene Using Hydrogenation and Oxidation [J].
Byun, Ik-Su ;
Yoon, Duhee ;
Choi, Jin Sik ;
Hwang, Inrok ;
Lee, Duk Hyun ;
Lee, Mi Jung ;
Kawai, Tomoji ;
Son, Young-Woo ;
Jia, Quanxi ;
Cheong, Hyeonsik ;
Park, Bae Ho .
ACS NANO, 2011, 5 (08) :6417-6424
[5]   Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy:: reproducibility, kinetics and nanofabrication [J].
Calleja, M ;
Anguita, J ;
García, R ;
Birkelund, K ;
Pérez-Murano, F ;
Dagata, JA .
NANOTECHNOLOGY, 1999, 10 (01) :34-38
[6]   Molecular mechanism of water bridge buildup:: Field-induced formation of nanoscale menisci [J].
Cramer, Tobias ;
Zerbetto, Francesco ;
Garcia, Ricardo .
LANGMUIR, 2008, 24 (12) :6116-6120
[7]   Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography [J].
Espinosa, Francisco M. ;
Ryu, Yu K. ;
Marinov, Kolyo ;
Dumcenco, Dumitru ;
Kis, Andras ;
Garcia, Ricardo .
APPLIED PHYSICS LETTERS, 2015, 106 (10)
[8]   Thermochemical nanopatterning of organic semiconductors [J].
Fenwick, Oliver ;
Bozec, Laurent ;
Credgington, Dan ;
Hammiche, Azzedine ;
Lazzerini, Giovanni Mattia ;
Silberberg, Yaron R. ;
Cacialli, Franco .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :664-668
[9]   Nano-chemistry and scanning probe nanolithographies [J].
Garcia, R ;
Martinez, RV ;
Martinez, J .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (01) :29-38
[10]  
Garcia R, 2014, NAT NANOTECHNOL, V9, P577, DOI [10.1038/NNANO.2014.157, 10.1038/nnano.2014.157]