Numerical study of ultrafine particles dispersion in the wake of a cylinder

被引:9
作者
Keita, N. S. [1 ,4 ]
Mehel, A. [1 ]
Murzyn, F. [2 ]
Taniere, A. [3 ]
Arcen, B. [3 ]
Diourte, B. [4 ]
机构
[1] ESTACA, Air Qual & Depollut Grp, Dept Mech & Environm Engn, Paris Saclay Campus, F-78180 Montigny Le Bretonneux, France
[2] ESTACA, Air Qual & Depollut Grp, Dept Mech & Environm Engn, West Campus, F-53000 Laval, France
[3] Univ Lorraine, LEMTA, CNRS, F-54000 Nancy, France
[4] USTTB, Fac Sci & Technol Bamako, Phys Dept, Bamako, Mali
关键词
Ultrafine particles dispersion; Cylinder wake flow; Turbulence; Reynolds stress model; Brownian diffusion; CIRCULAR-CYLINDER; 2-PHASE FLOW; LUNG-CANCER; WIND-TUNNEL; STREET; FINE; SIMULATION; TURBULENT; MORTALITY; EXPOSURE;
D O I
10.1016/j.apr.2018.08.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The dynamics of ultrafine particles are strongly dependent to the air flow topology. In this study, the dispersion of carbon nanoparticles in the wake of a cylinder placed in an air flow at Reynolds number of 9300 is numerically investigated. An Eulerian/Lagrangian approach is used to compute the two-phase flow; the carrier phase is predicted through a RANS (Reynolds Averaged Navier-Stokes) model while a particle Lagrangian tracking method provides the trajectory of each nanoparticle. The present numerical investigation allows studying the influence of Brownian and turbulence effects on the nanoparticles dispersion. The main results reveal that (1) The Brownian diffusion tends to concentrate the carbon nanoparticles in the form of a filament at the periphery of the vortices that are generated in the cylinder wake. (2) The turbulence increases the lateral dispersion of the nanoparticles. It disperses them from the edge to the core of the vortices. (3) The highest concentration levels decrease from the near wake of the cylinder to the far wake region while the lateral dispersion increases.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [41] Numerical Study of Particle Dispersion in the Wake of Two Tandem Square Cylinders Using Discrete Vortex Method
    Huang, Yuandong
    PARTICULATE SCIENCE AND TECHNOLOGY, 2011, 29 (06) : 526 - 540
  • [42] Numerical investigation of wake and flow-induced vibrations of a rotating cylinder in flow
    Bao, Yanxu
    Lin, Yongshui
    Chen, Wei
    Rheem, Chang-Kyu
    Li, Xiaobin
    OCEAN ENGINEERING, 2022, 262
  • [43] Vortex dynamics of a cylinder wake in proximity to a wall
    Sarkar, S.
    Sarkar, Sudipto
    JOURNAL OF FLUIDS AND STRUCTURES, 2010, 26 (01) : 19 - 40
  • [44] Air contamination inside an actual operating room due to ultrafine particles: An experimental-numerical thermo-fluid dynamic study
    Massarotti, Nicola
    Mauro, Alessandro
    Mohamed, Salahudeen
    Romano, Mario R.
    ATMOSPHERIC ENVIRONMENT, 2021, 249
  • [45] The effect of Reynolds number on the elliptical cylinder wake
    Shi, Xiaoyu
    Alam, Md Mahbub
    Bai, Honglei
    Wang, Hanfeng
    WIND AND STRUCTURES, 2020, 30 (05) : 525 - 532
  • [46] Exposure assessment of a cyclist to PM10 and ultrafine particles
    Berghmans, P.
    Bleux, N.
    Panis, L. Int
    Mishra, V. K.
    Torfs, R.
    Van Poppel, M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (04) : 1286 - 1298
  • [47] Turbulent wake behind a concave curved cylinder
    Jiang, Fengjian
    Pettersen, Bjornar
    Andersson, Helge, I
    JOURNAL OF FLUID MECHANICS, 2019, 878 : 663 - 699
  • [48] Spanwise Cylinder Wake Hydrodynamics and Fish Behavior
    Muhawenimana, V
    Wilson, C. A. M. E.
    Ouro, P.
    Cable, J.
    WATER RESOURCES RESEARCH, 2019, 55 (11) : 8569 - 8582
  • [49] Numerical study on the wake structures of a sphere in linearly stratified flow
    Shi, Liu Liu
    Wei, Na
    Chen, Er Yun
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 97 - 113
  • [50] PIV MEASUREMENTS IN THE WAKE OF A CACTUS SHAPED CYLINDER
    Karaki, W.
    Abboud, J.
    Daher, N.
    Osman, M.
    Oweis, G.
    IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C, 2009, : 2003 - 2007