Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids

被引:102
作者
Yu, Xin [1 ,2 ]
Gao, Yi-Tian [1 ,2 ,3 ]
Sun, Zhi-Yuan [1 ,2 ]
Liu, Ying [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 05期
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
INTEGRABLE PROPERTIES; WAVES; MODEL; TRANSFORMATIONS; BACKLUND;
D O I
10.1103/PhysRevE.83.056601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Under investigation is a generalized variable-coefficient forced Korteweg-de Vries equation in fluids and other fields. From the bilinear form of such equation, the N-soliton solution and a type of analytic solution are constructed with symbolic computation. Analytic analysis indicates that: (1) dispersive and dissipative coefficients affect the solitonic velocity; (2) external-force term affects the solitonic velocity and background; (3) line-damping coefficient and some parameters affect the solitonic velocity, background, and amplitude. Solitonic propagation and interaction can be regarded as the combination of the effects of various variable coefficients. According to a constraint among the nonlinear, dispersive, and line-damping coefficients in this paper, the possible applications of our results in the real world are also discussed in three aspects, i.e., solution with the constraint, solution without the constraint, and approximate solution.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[2]   OBSERVATION OF AN ELECTRONIC BOUND-STATE ABOVE A POTENTIAL WELL [J].
CAPASSO, F ;
SIRTORI, C ;
FAIST, J ;
SIVCO, DL ;
CHU, SNG ;
CHO, AY .
NATURE, 1992, 358 (6387) :565-567
[3]   Solitary waves in an inhomogeneous rod composed of a general hyperelastic material [J].
Dai, HH ;
Huo, Y .
WAVE MOTION, 2002, 35 (01) :55-69
[4]   Exact periodic solitary-wave solution for KdV equation [J].
School of Mathematics and Physics, Yunnan University, Kunming 650091, China ;
不详 ;
不详 .
Chin. Phys. Lett., 2008, 5 (1531-1533) :1531-1533
[5]   The effect of a bump on wave propagation in a fluid-filled elastic tube [J].
Demiray, H .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (02) :203-215
[6]   Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg-de Vries equation [J].
Demiray, Hilmi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) :1747-1755
[7]   Forced KdV equation in a fluid-filled elastic tube with variable initial stretches [J].
Demiray, Hilmi .
CHAOS SOLITONS & FRACTALS, 2009, 42 (03) :1388-1395
[8]  
EI GA, 2002, CHAOS, V12, P1015
[9]  
Formaggia L., 1999, Computing and Visualization in Science, V2, P75, DOI 10.1007/s007910050030
[10]   Forced Korteweg-de Vries equation in an elastic tube filled with an inviscid fluid [J].
Gaik, Tay Kim .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (10) :621-632