Inverse problem of potential theory

被引:1
作者
Ramm, A. G. [1 ]
机构
[1] Kansas State Univ, Math Dept, Manhattan, KS 66506 USA
关键词
Inverse problems; Potential theory; SYMMETRY PROBLEM; UNIQUENESS;
D O I
10.1016/j.aml.2017.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
P. Novikov in 1938 has proved that if u(1) (x) = u(2)(x) for vertical bar x vertical bar > R, where R > 0 is a large number, u(j)(x) := integral(Dj) g0(x, y)dy, g0(x, y) := 1/4 pi vertical bar x - y vertical bar, and D-j subset of R-3, j = 1,2, D-j subset of B-R, are bounded, connected, smooth domains, star-shaped with respect to a common point, then D-1 = D-2. Here B-R := {x : vertical bar x vertical bar <= R}. Our basic results are: (a) the removal of the assumption about star-shapeness of D-j, (b) a new approach to the problem, (c) the construction of counter-examples for a similar problem in which g(0) is replaced by g = e(ik)vertical bar x - y vertical bar/4 pi vertical bar x - y vertical bar, where k > 0 is a fixed constant. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] A NEW APPROACH TO THE INVERSE DISCRETE TRANSMISSION EIGENVALUE PROBLEM
    Bondarenko, Natalia P.
    Yurko, Vjacheslav A.
    INVERSE PROBLEMS AND IMAGING, 2022, 16 (04) : 739 - 751
  • [32] Inverse inclusion problem: A stable method to determine disks
    Triki, Faouzi
    Tsou, Chun-Hsiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3259 - 3281
  • [33] An inverse problem for the Schrodinger equation with Neumann boundary condition
    Saci, Atef
    Rebiai, Salah-Eddine
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2023, 14 (01) : 50 - 69
  • [34] Stability for the inverse potential problem by the local Dirichlet-to-Neumann map for the Schrodinger equation
    Fathallah, Ines Kamoun
    APPLICABLE ANALYSIS, 2007, 86 (07) : 899 - 914
  • [35] Inverse Scattering Theory
    INVERSE SCATTERING THEORY AND TRANSMISSION EIGENVALUES, 2016, : 1 - +
  • [36] PROBABILISTIC INVERSE THEORY
    Debski, Wojciech
    ADVANCES IN GEOPHYSICS, VOL 52, 2010, 52 : 1 - 102
  • [37] The Sommerfeld problem and inverse problem for the Helmholtz equation
    Kalmenov, T. S.
    Kabanikhin, S., I
    Les, Aidana
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (01): : 49 - 64
  • [38] On the Theory of the Known Inverse Problems for the Heat Transfer Equation
    Sabitov, K. B.
    Zaynullov, A. R.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2019, 161 (02): : 274 - 291
  • [39] Feynman's Inverse Problem
    Kirkeby, Adrian
    SIAM REVIEW, 2024, 66 (04) : 694 - 718
  • [40] An inverse problem in reaction kinetics
    Santosa, Fadil
    Weitz, Benjamin
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (08) : 1507 - 1520