Dynamic Electrochemical Interfaces for Energy Conversion and Storage

被引:14
作者
Shin, Heejong [1 ,2 ]
Yoo, Ji Mun [3 ]
Sung, Yung-Eun [1 ,2 ]
Chung, Dong Young [4 ]
机构
[1] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul 08826, South Korea
[2] Seoul Natl Univ SNU, Sch Chem & Biol Engn, Seoul 08826, South Korea
[3] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
来源
JACS AU | 2022年 / 2卷 / 10期
基金
新加坡国家研究基金会;
关键词
electrochemical interface; electrochemistry; energy conversion and storage; dynamics; reconstruction; OXYGEN EVOLUTION REACTION; WATER OXIDATION; EVOLVING CATALYST; REDOX MEDIATORS; CO2; REDUCTION; ACTIVE-SITES; LITHIUM; SURFACE; PEROVSKITE; BATTERIES;
D O I
10.1021/jacsau.2c00385
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy conversion and storage are central to developing future renewable energy systems. For efficient energy utilization, both the performance and stability of electrochemical systems should be optimized in terms of the electrochemical interface. To achieve this goal, it is imperative to understand how a tailored electrode structure and electrolyte speciation can modify the electrochemical interface structure to improve its properties. However, most approaches describe the electrochemical interface in a static or frozen state. Although a simple static model has long been adopted to describe the electrochemical interface, atomic and molecular level pictures of the interface structure should be represented more dynamically to understand the key interactions. From this perspective, we highlight the importance of understanding the dynamics within an electrochemical interface in the process of designing highly functional and robust energy conversion and storage systems. For this purpose, we explore three unique classes of dynamic electrochemical interfaces: self-healing, active-site-hosted, and redox-mediated interfaces. These three cases of dynamic electrochemical interfaces focusing on active site regeneration collectively suggest that our understanding of electrochemical systems should not be limited to static models but instead expanded toward dynamic ones with close interactions between the electrode surface, dissolved active sites, soluble species, and reactants in the electrolyte. Only when we begin to comprehend the fundamentals of these dynamics through operando analyses can electrochemical conversion and storage systems be advanced to their full potential.
引用
收藏
页码:2222 / 2234
页数:13
相关论文
共 89 条
[1]   CsMnBr3: Lead-Free Nanocrystals with High Photoluminescence Quantum Yield and Picosecond Radiative Lifetime [J].
Almutlaq, Jawaher ;
Mir, Wasim J. ;
Gutierrez-Arzaluz, Luis ;
Yin, Jun ;
Vasylevskyi, Serhii ;
Maity, Partha ;
Liu, Jiakai ;
Naphade, Rounak ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ACS MATERIALS LETTERS, 2021, 3 (03) :290-297
[2]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.128, 10.1038/NENERGY.2016.128]
[3]   Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution [J].
Bergmann, Arno ;
Martinez-Moreno, Elias ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2015, 6
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[5]   Phase Segregation in Cobalt Iron Oxide Nanowires toward Enhanced Oxygen Evolution Reaction Activity [J].
Budiyanto, Eko ;
Salamon, Soma ;
Wang, Yue ;
Wende, Heiko ;
Tueysuez, Harun .
JACS AU, 2022, 2 (03) :697-710
[6]   Self-healing electronic skins for aquatic environments [J].
Cao, Yue ;
Tan, Yu Jun ;
Li, Si ;
Lee, Wang Wei ;
Guo, Hongchen ;
Cai, Yongqing ;
Wang, Chao ;
Tee, Benjamin C. -K. .
NATURE ELECTRONICS, 2019, 2 (02) :75-82
[7]   Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution [J].
Chang, Seo Hyoung ;
Danilovic, Nemanja ;
Chang, Kee-Chul ;
Subbaraman, Ram ;
Paulikas, Arvydas P. ;
Fong, Dillon D. ;
Highland, Matthew J. ;
Baldo, Peter M. ;
Stamenkovic, Vojislav R. ;
Freeland, John W. ;
Eastman, Jeffrey A. ;
Markovic, Nenad M. .
NATURE COMMUNICATIONS, 2014, 5
[8]   Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design [J].
Chen, Feng-Yang ;
Wu, Zhen-Yu ;
Adler, Zachary ;
Wang, Haotian .
JOULE, 2021, 5 (07) :1704-1731
[9]   In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts [J].
Chen, Shengmei ;
Ma, Longtao ;
Huang, Zhaodong ;
Liang, Guojin ;
Zhi, Chunyi .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (01)
[10]  
Chen YH, 2013, NAT CHEM, V5, P489, DOI [10.1038/NCHEM.1646, 10.1038/nchem.1646]