Manipulation of the catalyst-support interactions for inducing nanotube forest growth

被引:30
作者
Esconjauregui, S. [1 ]
Fouquet, M. [1 ]
Bayer, B. C. [1 ]
Eslava, S. [2 ]
Khachadorian, S. [3 ]
Hofmann, S. [1 ]
Robertson, J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[3] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; WALLED CARBON NANOTUBES; BASE-GROWTH; COBALT; SILICA; MECHANISM; CO/SIO2; NICKEL; FILMS; PARTICLE;
D O I
10.1063/1.3549813
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show how an oxidative pretreatment of Fe, Co, or Ni growth catalyst on SiO2 support can be used to switch the growth mode of carbon nanotubes from tip growth to root growth, thus favoring the growth of dense, vertically aligned nanotube forests. The oxidative treatment creates a strong catalyst-support interaction at the catalyst-silica interface, which limits the surface diffusion and sintering of the catalyst nanoparticles and binds the catalyst to the SiO2 surface. This shows that the alignment and growth mode of nanotubes can be controlled, increasing the range of support materials giving dense nanotube forests. (c) 2011 American Institute of Physics. [doi:10.1063/1.3549813]
引用
收藏
页数:7
相关论文
共 48 条
[1]   Nanotube electronics and optoelectronics [J].
Avouris, Phaedon ;
Chen, Jia .
MATERIALS TODAY, 2006, 9 (10) :46-54
[2]   EFFECTS OF ACTIVATION ON THE SURFACE-PROPERTIES OF SILICA-SUPPORTED COBALT CATALYSTS [J].
COULTER, KE ;
SAULT, AG .
JOURNAL OF CATALYSIS, 1995, 154 (01) :56-64
[3]   Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration [J].
Danielson, David T. ;
Sparacin, Daniel K. ;
Michel, Jurgen ;
Kimerling, Lionel C. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
[4]   ELECTRONIC-STRUCTURE OF ULTRATHIN FE FILMS ON TIO2(110) STUDIED WITH SOFT-X-RAY PHOTOELECTRON-SPECTROSCOPY AND RESONANT PHOTOEMISSION [J].
DIEBOLD, U ;
TAO, HS ;
SHINN, ND ;
MADEY, TE .
PHYSICAL REVIEW B, 1994, 50 (19) :14474-14480
[5]   How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition [J].
Dijon, J. ;
Szkutnik, P. D. ;
Fournier, A. ;
de Monsabert, T. Goislard ;
Okuno, H. ;
Quesnel, E. ;
Muffato, V. ;
De Vito, E. ;
Bendiab, N. ;
Bogner, A. ;
Bernier, N. .
CARBON, 2010, 48 (13) :3953-3963
[6]   Temperature selective growth of carbon nanotubes by chemical vapor deposition [J].
Ducati, C ;
Alexandrou, I ;
Chhowalla, M ;
Amaratunga, GAJ ;
Robertson, J .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (06) :3299-3303
[7]   Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth [J].
Esconjauregui, Santiago ;
Whelan, Caroline M. ;
Maex, Karen .
NANOTECHNOLOGY, 2007, 18 (01)
[8]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[9]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[10]   IDENTIFICATION OF NICKEL SPECIES AND THEIR INTERACTION WITH THE SUPPORT IN NI-SILICA CATALYST PRECURSOR [J].
GHUGE, KD ;
BHAT, AN ;
BABU, GP .
APPLIED CATALYSIS A-GENERAL, 1993, 103 (02) :183-204