RESOLUTION ENHANCEMENT FOR HYPERSPECTRAL IMAGES: A SUPER-RESOLUTION AND FUSION APPROACH

被引:0
作者
Kwan, Chiman [1 ]
Choi, Joon Hee [2 ]
Chan, Stanley [2 ]
Zhou, Jin [3 ]
Budavari, Bence [1 ]
机构
[1] Signal Proc Inc, Rockville, MD 20850 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
[3] Google Inc, Mountain View, CA 80305 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
关键词
Hyperspectral Imaging; Remote Sensing; Hybrid Color Mapping; Plug-and-Play ADMM; Super-resolution; MULTISPECTRAL DATA; MS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Many remote sensing applications require a high-resolution hyper-spectral image. However, resolutions of most hyperspectral imagers are limited to tens of meters. Existing resolution enhancement techniques either acquire additional multispectral band images or use a pan band image. The former poses hardware challenges, whereas the latter has limited performance. In this paper, we present a new resolution enhancement method that only requires a color image. Our approach integrates two newly developed techniques in the area: (1) A hybrid color mapping algorithm, and (2) A Plug-and-Play algorithm for single image super-resolution. Comprehensive experiments using real hyperspectral images are conducted to validate and evaluate the proposed method.
引用
收藏
页码:6180 / 6184
页数:5
相关论文
共 28 条
[1]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[2]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[3]  
[Anonymous], 2015, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., DOI DOI 10.1109/JSTARS.2015.2420582
[4]  
[Anonymous], 2012, P 4 WORKSH HYP IM SI, DOI DOI 10.1109/WHISPERS.2012.6874223
[5]   PERFORMANCE OF OPTICAL-FLOW TECHNIQUES [J].
BARRON, JL ;
FLEET, DJ ;
BEAUCHEMIN, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) :43-77
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]  
CHAVEZ PS, 1991, PHOTOGRAMM ENG REM S, V57, P295
[8]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[9]   BLIND DECONVOLUTION BY MEANS OF THE RICHARDSON-LUCY ALGORITHM [J].
FISH, DA ;
BRINICOMBE, AM ;
PIKE, ER ;
WALKER, JG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (01) :58-65
[10]  
Green RO, 2008, AEROSP CONF PROC, P114