Zero and Few Shot Learning With Semantic Feature Synthesis and Competitive Learning

被引:46
作者
Guan, Jiechao [1 ]
Lu, Zhiwu [1 ]
Xiang, Tao [2 ]
Li, Aoxue [3 ]
Zhao, An [1 ]
Wen, Ji-Rong [1 ]
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing Key Lab Big Data Management & Anal Method, Beijing 100872, Peoples R China
[2] Univ Surrey, Dept Elect & Elect Engn, Guildford GU2 7XH, Surrey, England
[3] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Prototypes; Training; Power line communications; Data models; Generators; Object recognition; Zero-shot learning; projection learning; data synthesis; competitive learning; few-shot learning; CLASSIFICATION; ALGORITHM;
D O I
10.1109/TPAMI.2020.2965534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g., an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between the seen and unseen class domains. In this work, this is achieved by unseen class data synthesis and robust projection function learning. Specifically, a novel semantic data synthesis strategy is proposed, by which semantic class prototypes (e.g., attribute vectors) are used to simply perturb seen class data for generating unseen class ones. As in any data synthesis/hallucination approach, there are ambiguities and uncertainties on how well the synthesised data can capture the targeted unseen class data distribution. To cope with this, the second contribution of this work is a novel projection learning model termed competitive bidirectional projection learning (BPL) designed to best utilise the ambiguous synthesised data. Specifically, we assume that each synthesised data point can belong to any unseen class; and the most likely two class candidates are exploited to learn a robust projection function in a competitive fashion. As a third contribution, we show that the proposed ZSL model can be easily extended to few-shot learning (FSL) by again exploiting semantic (class prototype guided) feature synthesis and competitive BPL. Extensive experiments show that our model achieves the state-of-the-art results on both problems.
引用
收藏
页码:2510 / 2523
页数:14
相关论文
共 74 条
[1]   Label-Embedding for Image Classification [J].
Akata, Zeynep ;
Perronnin, Florent ;
Harchaoui, Zaid ;
Schmid, Cordelia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) :1425-1438
[2]  
Akata Z, 2015, PROC CVPR IEEE, P2927, DOI 10.1109/CVPR.2015.7298911
[3]  
[Anonymous], 2013, PROC 26 INT C NEURAL
[4]  
[Anonymous], 2012, JMLR WORKSHOP C P
[5]   Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions [J].
Ba, Jimmy Lei ;
Swersky, Kevin ;
Fidler, Sanja ;
Salakhutdinov, Ruslan .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4247-4255
[6]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[7]   Generating Visual Representations for Zero-Shot Classification [J].
Bucher, Maxime ;
Herbin, Stephane ;
Jurie, Frederic .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2666-2673
[8]  
Chandar APS, 2014, ADV NEUR IN, V27
[9]   Synthesized Classifiers for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Gong, Boqing ;
Sha, Fei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5327-5336
[10]   An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild [J].
Chao, Wei-Lun ;
Changpinyo, Soravit ;
Gong, Boqing ;
Sha, Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :52-68