On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions

被引:26
作者
Pardo, Arturo [1 ]
Gutierrez-Gutierrez, Jose A. [1 ]
Lihacova, I [2 ]
Lopez-Higuera, Jose M. [1 ,3 ,4 ]
Conde, Olga M. [1 ,3 ,4 ]
机构
[1] Univ Cantabria, Grp Ingn Foton, TEISA, Ave Los Castros S-N, Cantabria 39006, Spain
[2] Inst Atom Phys & Spect, Biophoton Lab, Raina Blvd 19, LV-1586 Riga, Latvia
[3] CIBER BBN, Cantabria, Spain
[4] Inst Invest Sanitaria Valdecilla IDIVAL, Calle Cardenal Herrera Oria S-N, Santander 39011, Cantabria, Spain
关键词
KERNEL DENSITY-ESTIMATION; PATHOLOGIES; TISSUES;
D O I
10.1364/BOE.9.006283
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Early detection and diagnosis is a must in secondary prevention of melanoma and other cancerous lesions of the skin. In this work, we present an online, reservoir-based, non-parametric estimation and classification model that allows for this functionality on pigmented lesions, such that detection thresholding can be tuned to maximize accuracy and/or minimize overall false negative rates. This system has been tested in a dataset consisting of 116 patients and a total of 124 hyperspectral images of nevi, raised nevi and melanomas, detecting up to 100% of the suspicious lesions at the expense of some false positives. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6283 / 6301
页数:19
相关论文
共 52 条
[1]   Cancer detection using infrared hyperspectral imaging [J].
Akbari, Hamed ;
Uto, Kuniaki ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
CANCER SCIENCE, 2011, 102 (04) :852-857
[2]  
[Anonymous], PROBABILITY RANDOM V
[3]  
[Anonymous], IMAGING APPL OPTICS
[4]  
[Anonymous], 34 ANN INT C IEEE EM
[5]  
[Anonymous], CA CANC J CLIN
[6]  
[Anonymous], 1997, Applied numerical linear algebra
[7]  
[Anonymous], 2018, J EUR ACAD DERMATOL
[8]  
[Anonymous], P SPIE
[9]  
[Anonymous], DENSITY ESTIMATION S
[10]  
[Anonymous], J BIOMED OPT