Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes

被引:32
作者
Kopteva, N [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, RU-119899 Moscow, Russia
关键词
convection-diffusion problems; four-point upwind difference scheme; singular perturbation; Shishkin mesh; Bakhvalov mesh;
D O I
10.1007/s006070170034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider two convection-diffusion boundary value problems in conservative form: for an ordinary differential equation and for a parabolic equation. Both the problems are discretized using a four-point second-order upwind space difference operator on arbitrary and layer-adapted space meshes. We give epsilon -uniform maximum norm error estimates O(N-2 ln(2) N(+tau)) and O(N-2(+tau)). respectively. for the Shishkin and Bakhvalov space meshes, where N is the space meshnodes number, tau is the rime mesh-interval. The smoothness condition for the Bakhvalov mesh is replaced by a weaker condition.
引用
收藏
页码:179 / 197
页数:19
相关论文
共 20 条
[1]  
Andreev VB, 1998, DIFF EQUAT+, V34, P921
[2]  
ANDREEV VB, 1998, COMP MATH MATH PHYS, V38, P101
[3]  
[Anonymous], 1992, GRID APPROXIMATION S
[4]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[6]  
GONTCHAROV AL, 1988, Z VYCHISL MAT MAT FI, V28, P867
[7]  
GROMOV BF, 1969, P ALL UN SEM COMP VI
[8]  
HEMKER PW, 1999, RECENT ADV NUMERICAL, V2, P521
[9]  
Kopteva N., 1997, COMP MATH MATH PHYS, V37, P1173
[10]  
Kopteva NV, 1996, DIFF EQUAT+, V32, P958