ON q-ARY LINEAR COMPLETELY REGULAR CODES WITH ρ=2 AND ANTIPODAL DUAL

被引:20
作者
Borges, Joaquim [1 ]
Rifa, Josep [1 ]
Zinoviev, Victor A. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Bellaterra 08193, Spain
[2] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow 127994, Russia
关键词
Linear completely regular codes; completely transitive codes; covering radius; TRANSITIVE CODES; NONEXISTENCE;
D O I
10.3934/amc.2010.4.567
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We characterize all q-ary linear completely regular codes with covering radius rho = 2 when the dual codes are antipodal. These completely regular codes are extensions of linear completely regular codes with covering radius 1, which we also classify. For rho = 2, we give a list of all such codes known to us. This also gives the characterization of two weight linear antipodal codes. Finally, for a class of completely regular codes with covering radius rho = 2 and antipodal dual, some interesting properties on self-duality and lifted codes are pointed out.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]  
[Anonymous], 1973, PHILIPS RES REPORT S
[3]  
Bassalygo L.A., 1977, Probl. Peredachi Inf, V13, P22
[4]  
Bassalygo L.A., 1974, Probl. Peredachi Inf, V10, P9
[5]  
[Богданова Галина Тодорова Bogdanova G.T], 2007, [Проблемы передачи информации, Problemy peredachi informatsii], V43, P13
[6]  
Bonisoli A., 1983, ARS COMBINATORIA, V18, P181
[7]   On non-antipodal binary completely regular codes [J].
Borges, J. ;
Rifa, J. ;
Zinoviev, V. A. .
DISCRETE MATHEMATICS, 2008, 308 (16) :3508-3525
[8]   On the nonexistence of completely transitive codes [J].
Borges, J ;
Rifà, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :279-280
[9]   Nonexistence of completely transitive codes with error-correcting capability e > 3 [J].
Borges, J ;
Rifà, J ;
Zinoviev, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1619-1621
[10]  
BORGES J, ARXIV09060550V1