A novel adaptive sampling by Tsallis entropy

被引:7
|
作者
Xu, Qing [1 ]
Sbert, Mateu [2 ]
Xing, Lianping [1 ]
Zhang, Jianfeng [1 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
[2] Univ Girona, Inst Informat & Applicat, Girona 17003, Spain
来源
COMPUTER GRAPHICS, IMAGING AND VISUALISATION: NEW ADVANCES | 2007年
基金
中国国家自然科学基金;
关键词
adaptive sampling; Monte Carlo; Tsallis entropy; global illumination;
D O I
10.1109/CGIV.2007.10
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an appealing tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms. In this paper, we investigate the use of entropy in the domain of information theory to measure pixel quality and to do adaptive sampling. Especially we explore the nonextensive Tsallis entropy, in which a real number q is introduced as the entropic index that presents the degree of nonextensivity, to evaluate pixel quality. By utilizing the least-squares design, an entropic index q can be obtained systematically to run adaptive sampling effectively. Implementation results show that the Tsallis entropy driven adaptive sampling significantly outperforms the existing methods.
引用
收藏
页码:5 / +
页数:3
相关论文
共 50 条
  • [31] Generalized uncertainty relations of Tsallis entropy on FrFT
    Xu Guanlei
    Xu Xiaogang
    Wang Xiaotong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 9 - 16
  • [32] QUANTUM DISCORD DERIVED FROM TSALLIS ENTROPY
    Jurkowski, Jacek
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (01)
  • [33] Generalized Maxwell Distribution in the Tsallis Entropy Formalism
    T. N. Bakiev
    D. V. Nakashidze
    A. M. Savchenko
    K. M. Semenov
    Moscow University Physics Bulletin, 2022, 77 : 728 - 740
  • [34] Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
    de Lima, Igo Pedro
    da Silva, Sergio Luiz E. F.
    Corso, Gilberto
    de Araujo, Joao M.
    ENTROPY, 2020, 22 (04)
  • [35] TSALLIS ENTROPY THEORY FOR DERIVATION OF INFILTRATION EQUATIONS
    Singh, V. P.
    TRANSACTIONS OF THE ASABE, 2010, 53 (02) : 447 - 463
  • [36] Tsallis Entropy Extraction for Mammographic Region Classification
    Alcantara, Rafaela
    Ferreira Junior, Perfilino
    Ramos, Aline
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 451 - 458
  • [37] The effects of the Tsallis entropy in the proton internal pressure
    Campos, S. D.
    Amarante, A. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (19):
  • [38] Coherence as entropy increment for Tsallis and Renyi entropies
    Vershynina, Anna
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [39] Order Properties Concerning Tsallis Residual Entropy
    Sfetcu, Razvan-Cornel
    Preda, Vasile
    MATHEMATICS, 2024, 12 (03)
  • [40] Some properties of cumulative Tsallis entropy of order
    Rajesh, G.
    Sunoj, S. M.
    STATISTICAL PAPERS, 2019, 60 (03) : 583 - 593