An Improved Model for Parameters Identification of Lithium-ion Battery Based on Dual Kalman Filter

被引:0
作者
Liu, Zheng [1 ,2 ]
Dang, Xuanju [1 ]
Jing, Benqin [1 ,2 ]
Ji, Jianbo [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Elect Engn & Automat, Guilin 541004, Guangxi Provinc, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Elect & Automat, Guilin 541004, Guangxi Provinc, Peoples R China
来源
JOURNAL OF APPLIED SCIENCE AND ENGINEERING | 2019年 / 22卷 / 04期
关键词
Lithium-ion Battery; Parameters Identification; Dual Kalman Filter; Equivalent-circuit Model; STATE-OF-CHARGE; EQUIVALENT-CIRCUIT MODEL; ONLINE ESTIMATION; TECHNOLOGIES; IMPACTS;
D O I
10.6180/jase.201912_22(4).0002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reliable model parameters identification is the key evaluation index for battery management system (BMS) in electric vehicles (EVs). To ensure the sustainability of lithium-ion battery (LIB) under unknown measurement noise, an effective LIB model with updated parameters should be developed. To soften the impact of measurement noise from the transducer, a combined equivalent circuit model (ECM) that considers the current noise as a compensation factor is introduced into the LIB. To identify the model parameters recursively based on suppression of the parameters perturbations in the ECM, a dual extended kalman filter algorithm is applied. Finally, the Dynamic Stress Test sequence (DST) and the Federal Urban Driving Schedule (FUDS) are loaded on LIB to test the validity of the improved approach. The experiment results demonstrate the effectiveness of improved model and filtering method in terms of parameters identification.
引用
收藏
页码:607 / 615
页数:9
相关论文
共 26 条
  • [1] Safety focused modeling of lithium-ion batteries: A review
    Abada, S.
    Marlair, G.
    Lecocq, A.
    Petit, M.
    Sauvant-Moynot, V.
    Huet, F.
    [J]. JOURNAL OF POWER SOURCES, 2016, 306 : 178 - 192
  • [2] Bastawrous H., 2015, J POWER SOURCES, V296, P215, DOI [10.1016/j.jpowsour.2015.07.041, DOI 10.1016/J.JPOWSOUR.2015.07.041]
  • [3] Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system
    Basu, Suman
    Hariharan, Krishnan S.
    Kolake, Subramanya Mayya
    Song, Taewon
    Sohn, Dong Kee
    Yeo, Taejung
    [J]. APPLIED ENERGY, 2016, 181 : 1 - 13
  • [4] Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
    Feng, Tianheng
    Yang, Lin
    Zhao, Xiaowei
    Zhang, Huidong
    Qiang, Jiaxi
    [J]. JOURNAL OF POWER SOURCES, 2015, 281 : 192 - 203
  • [5] A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
    He, Yao
    Liu, XingTao
    Zhang, ChenBin
    Chen, ZongHai
    [J]. APPLIED ENERGY, 2013, 101 : 808 - 814
  • [6] Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures
    Jaguemont, Joris
    Boulon, Loic
    Dube, Yves
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (01) : 1 - 14
  • [7] A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries
    Lai, Xin
    Zheng, Yuejiu
    Sun, Tao
    [J]. ELECTROCHIMICA ACTA, 2018, 259 : 566 - 577
  • [8] A new method of modeling and state of charge estimation of the battery
    Liu, Congzhi
    Liu, Weiqun
    Wang, Lingyan
    Hu, Guangdi
    Ma, Luping
    Ren, Bingyu
    [J]. JOURNAL OF POWER SOURCES, 2016, 320 : 1 - 12
  • [9] Omar N., 2016, IEEE 25 INT S IND EL, P286, DOI [10.1109/ISIE.2016.7744904, DOI 10.1109/ISIE.2016.7744904]
  • [10] State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model
    Pan, Haihong
    Lu, Zhiqiang
    Lin, Weilong
    Li, Junzi
    Chen, Lin
    [J]. ENERGY, 2017, 138 : 764 - 775