Denoising based on time-shift PCA

被引:161
作者
de Cheveigne, Alain
Simon, Jonathan Z.
机构
[1] ENS, Equipe Audit, Dept Etud Cognit, F-75230 Paris, France
[2] CNRS, UMR 2929, Lab Psychol Percept, F-75005 Paris, France
[3] Univ Paris 05, F-75005 Paris, France
[4] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Biol, College Pk, MD 20742 USA
关键词
Magnetoencephalography (MEG); electroencephalography (EEG); noise reduction; artifact removal; artifact rejection; regression; principal component analysis;
D O I
10.1016/j.jneumeth.2007.06.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present an algorithm for removing environmental noise from neurophysiological recordings such as magnetoencephalography (MEG). Noise fields measured by reference magnetometers are optimally filtered and subtracted from brain channels. The filters (one per reference[brain sensor pair) are obtained by delaying the reference signals, orthogonalizing them to obtain a basis, projecting the brain sensors onto the noise-derived basis, and removing the projections to obtain clean data. Simulations with synthetic data suggest that distortion of brain signals is minimal. The method surpasses previous methods by synthesizing, for each reference/brain sensor pair, a filter that compensates for convolutive mismatches between sensors. The method enhances the value of data recorded in health and scientific applications by suppressing harmful noise, and reduces the need for deleterious spatial or spectral filtering. It should be applicable to a wider range of physiological recording techniques, such as EEG, local field potentials, etc. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 38 条
[1]   Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method [J].
Adachi, Y ;
Shimogawara, M ;
Higuchi, M ;
Haruta, Y ;
Ochiai, M .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :669-672
[2]   Speech comprehension is correlated with temporal response patterns recorded from auditory cortex [J].
Ahissar, E ;
Nagarajan, S ;
Ahissar, M ;
Protopapas, A ;
Mahncke, H ;
Merzenich, MM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13367-13372
[3]  
Ahmar NE, 2005, I IEEE EMBS C NEUR E, P29
[4]   Optimal filtering in singular spectrum analysis [J].
Allen, MR ;
Smith, LA .
PHYSICS LETTERS A, 1997, 234 (06) :419-428
[5]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[6]   Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals [J].
Barbati, G ;
Porcaro, C ;
Zappasodi, F ;
Rossini, PM ;
Tecchio, F .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (05) :1220-1232
[7]   Human auditory cortical processing of changes in interaural correlation [J].
Chait, M ;
Poeppel, D ;
de Cheveigné, A ;
Simon, JZ .
JOURNAL OF NEUROSCIENCE, 2005, 25 (37) :8518-8527
[8]  
DECHEVEIGNE A, UNPUB SENSOR NOISE S
[9]   Advanced spectral methods for climatic time series [J].
Ghil, M ;
Allen, MR ;
Dettinger, MD ;
Ide, K ;
Kondrashov, D ;
Mann, ME ;
Robertson, AW ;
Saunders, A ;
Tian, Y ;
Varadi, F ;
Yiou, P .
REVIEWS OF GEOPHYSICS, 2002, 40 (01) :3-1
[10]   Denoising using local projective subspace methods [J].
Gruber, P. ;
Stadthanner, K. ;
Boehm, M. ;
Theis, F. J. ;
Lang, E. W. ;
Tome, A. M. ;
Teixeira, A. R. ;
Puntonet, C. G. ;
Saez, J. M. Gorriz .
NEUROCOMPUTING, 2006, 69 (13-15) :1485-1501