Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO

被引:74
作者
Asakura, N. [1 ]
Hoshino, K. [2 ]
Suzuki, S. [2 ]
Tokunaga, S. [1 ]
Someya, Y. [1 ]
Utoh, H. [1 ]
Kudo, H. [1 ]
Sakamoto, Y. [1 ]
Hiwatari, R. [1 ]
Tobita, K. [1 ]
Shimizu, K. [2 ]
Ezato, K. [2 ]
Seki, Y. [2 ]
Ohno, N. [3 ]
Ueda, Y. [4 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol QST, Aomori 0393212, Japan
[2] Natl Inst Quantum & Radiol Sci & Technol QST, Naka, Ibaraki 3110193, Japan
[3] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
[4] Osaka Univ, Grad Sch Engn, Osaka 5650871, Japan
关键词
divertor; DEMO; power exhaust; SONIC; simulation; impurity seeding; detachment; COPPER-ALLOYS; COMPONENTS; ITER;
D O I
10.1088/1741-4326/aa867a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Power exhaust to the divertor and the conceptual design have been investigated for a steady-state DEMO in Japan with 1.5 GW-level fusion power and the major radius of 8.5 m, where the plasma parameters were revised appropriate for the impurity seeding scenario. A system code survey for the Ar impurity seeding suggested the volume-averaged density, impurity concentration and exhaust power from the main plasma of P-sep = 205-285 MW. The divertor plasma simulation (SONIC) was performed in the divertor leg length of 1.6 m with the fixed exhaust power to the edge of Pout = 250 MW and the total radiation fraction at the edge, SOL and divertor (P-rad/P-out = 0.8), as a first step to investigate appropriate design of the divertor size and geometry. At the outer target, partial detachment was produced near the strike-point, and the peak heat load (q(target)) at the attached region was reduced to similar to 5 MW m(-2) with appropriate fuel and impurity puff rates. At the inner divertor target, full detachment of ion flux was produced and the peak qtarget was less than 10 MW m-2 mostly due to the surface-recombination. These results showed a power exhaust scenario and the divertor design concept. An integrated design of the water-cooling heat sink for the long leg divertor was proposed. Cu-ally (CuCrZr) cooling pipe was applicable as the heat sink to handle the high heat flux near the strike-point, where displacements per atom rate was estimated to be 0.5-1.5 per year by neutronics calculation. An arrangement of the coolant rooting for Cu-alloy and Reduced Activation Ferritic Martensitic (RAFM) steel (F82H) pipes in a divertor cassette was investigated, and the heat transport analysis of the W-monoblock and Cu-alloy pipe under the peak qtarget of 10 MWm(-2) and nuclear heating was performed. The maximum temperatures on the W-surface and Cu-alloy pipe were 1021 and 331 degrees C. Heat flux of 16 MW m(-2) was distributed in the major part of the coolant pipe. These results were acceptable for the plasma facing and structural materials.
引用
收藏
页数:12
相关论文
共 25 条
[1]   A simulation study of large power handling in the divertor for a Demo reactor [J].
Asakura, Nobuyuki ;
Shimizu, Katsuhiro ;
Hoshino, Kazuo ;
Tobita, Kenji ;
Tokunaga, Shinsuke ;
Takizuka, Tomonori .
NUCLEAR FUSION, 2013, 53 (12)
[2]  
Braams B J, 1987, 68 NEXT EUR TOR
[3]   Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER [J].
Eich, T. ;
Leonard, A. W. ;
Pitts, R. A. ;
Fundamenski, W. ;
Goldston, R. J. ;
Gray, T. K. ;
Herrmann, A. ;
Kirk, A. ;
Kallenbach, A. ;
Kardaun, O. ;
Kukushkin, A. S. ;
LaBombard, B. ;
Maingi, R. ;
Makowski, M. A. ;
Scarabosio, A. ;
Sieglin, B. ;
Terry, J. ;
Thornton, A. .
NUCLEAR FUSION, 2013, 53 (09)
[4]   Evaluation of copper alloys for fusion reactor divertor and first wall components [J].
Fabritsiev, SA ;
Zinkle, SJ ;
Singh, BN .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :127-137
[5]   Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks [J].
Goldston, R. J. .
NUCLEAR FUSION, 2012, 52 (01)
[6]   Impact of carbon and tungsten as divertor materials on the scrape-off layer conditions in JET [J].
Groth, M. ;
Brezinsek, S. ;
Belo, P. ;
Beurskens, M. N. A. ;
Brix, M. ;
Clever, M. ;
Coenen, J. W. ;
Corrigan, C. ;
Eich, T. ;
Flanagan, J. ;
Guillemaut, C. ;
Giroud, C. ;
Harting, D. ;
Huber, A. ;
Jachmich, S. ;
Kruezi, U. ;
Lawson, K. D. ;
Lehnen, M. ;
Lowry, C. ;
Maggi, C. F. ;
Marsen, S. ;
Meigs, A. G. ;
Pitts, R. A. ;
Sergienko, G. ;
Sieglin, B. ;
Silva, C. ;
Sirinelli, A. ;
Stamp, M. F. ;
van Rooij, G. J. ;
Wiesen, S. .
NUCLEAR FUSION, 2013, 53 (09)
[7]   The influence of the radial particle transport on the divertor plasma detachment [J].
Hoshino, K. ;
Shimizu, K. ;
Takizuka, T. ;
Asakura, N. ;
Nakano, T. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :573-576
[8]   Specification of properties and design allowables for copper alloys used in HHF components of ITER [J].
Kalinin, GM ;
Fabritziev, SA ;
Singh, BN ;
Tahtinen, S ;
Zinkle, SJ .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 :668-672
[9]   Analytical calculations for impurity seeded partially detached divertor conditions [J].
Kallenbach, A. ;
Bernert, M. ;
Dux, R. ;
Reimold, F. ;
Wischmeier, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
[10]   Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO [J].
Kallenbach, A. ;
Bernert, M. ;
Dux, R. ;
Casali, L. ;
Eich, T. ;
Giannone, L. ;
Herrmann, A. ;
McDermott, R. ;
Mlynek, A. ;
Mueller, H. W. ;
Reimold, F. ;
Schweinzer, J. ;
Sertoli, M. ;
Tardini, G. ;
Treutterer, W. ;
Viezzer, E. ;
Wenninger, R. ;
Wischmeier, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)