Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear Schrodinger equation in a domain

被引:31
作者
Planchon, Fabrice
Raphaeel, Pierre
机构
[1] Univ Paris 13, Inst Galilee, CNRS, UMR 7539,Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
[2] Univ Paris 11, CNRS, UMR 8628, Math Lab, F-91405 Orsay, France
来源
ANNALES HENRI POINCARE | 2007年 / 8卷 / 06期
关键词
D O I
10.1007/s00023-007-0332-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let iu(t) = -Delta u - |u| 4/N u be the L-2-critical nonlinear Schrodinger equation, in a domain Omega subset of R-N with initial data in H-0(1)(Omega) (Dirichlet boundary condition) and N <= 4. We prove existence and stability of finite time blow-up dynamics with the log-log blow-up speed vertical bar del u(t)vertical bar(L2) similar to root log vertical bar log(T- t)vertical bar/T-t. Moreover, for a suitable class of finite time blow-up solutions, we derive global rigidity properties which turn out to be modeled after the RN ones.
引用
收藏
页码:1177 / 1219
页数:43
相关论文
共 31 条
[1]  
ANTON R, 2005, STICHARTZ INEQUALTIE
[2]  
Banica V, 2004, ANN SCUOLA NORM-SCI, V3, P139
[3]   MOLECULAR MECHANICS WITH AN ARRAY PROCESSOR [J].
BERENS, PH ;
WILSON, KR .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :313-332
[4]  
BOURGAIN J, 1997, ANN SCUOLA NORM SUP, V25, P197
[5]   On nonlinear Schrodinger equations in exterior domains [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (03) :295-318
[6]   Two singular dynamics of the nonlinear Schrodinger equation on a plane domain [J].
Burq, N ;
Gerard, P ;
Tzvetkov, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :1-19
[7]  
Cazenave, 2003, LECT NOTES MATH, V10
[8]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[9]   Self-focusing on bounded domains [J].
Fibich, G ;
Merle, F .
PHYSICA D, 2001, 155 (1-2) :132-158
[10]   Proof of a Spectral Property related to the singularity formation for the L2 critical nonlinear Schrodinger equation [J].
Fibich, Gadi ;
Merle, Frank ;
Raphael, Pierre .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (01) :1-13