A Hardy inequality in the half-space

被引:36
作者
Tidblom, J [1 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
Hardy inequality; halfspace; remainder terms;
D O I
10.1016/j.jfa.2004.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove a Hardy-type inequality in the upper half-space which generalize an inequality originally proved by Maz'ya (Sobolev Spaces, Springer, Berlin, 1985, p. 99). Here we present a different proof, which enable us to improve the constant in front of the remainder term. We will also generalize the inequality to the L-p case. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:482 / 495
页数:14
相关论文
共 11 条
[1]  
[Anonymous], 1952, CAMBRIDGE MATH LIB
[2]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[3]   Refined geometric Lp hardy inequalities [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :869-881
[4]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[5]  
Davies E.B, 1995, CAMBRIDGE STUDIES AD, V42
[6]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[7]   A geometrical version of Hardy's inequality [J].
Hoffmann-Ostenhof, M ;
Hoffmann-Ostenhof, T ;
Laptev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (02) :539-548
[8]  
KUFNER A, 1990, PITMAN RES NOTES MAT, V219
[9]  
Kufner A., 2017, Weighted Inequalities of Hardy Type, V2nd
[10]  
MAZYA VG, 1985, SPRINGER SERIES SOVI