Vegetation index differencing and linear regression for change detection in a Swedish mountain range using landsat TM® and ETM+® imagery

被引:45
|
作者
Nordberg, ML [1 ]
Evertson, J
机构
[1] Stockholm Univ, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden
[2] SwedPower AB, SE-16216 Stockholm, Sweden
关键词
high-latitude mountainous areas; change detection; heath vegetation; Landsat TM (R) and ETM+((R)); NDVI; indigenous knowledge;
D O I
10.1002/ldr.660
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper describes the extent to which the normalized difference vegetation index (NDVI) in combination with image regression used on satellite data can indicate vegetation cover decreases caused by increased exploitation of Swedish mountains. The methods outlined in this study give a basis for detection of less sustainable mountain ecosystems by using as an indicator bare patches of humus or soil where none existed previously. Landsat 5 TM (R) data from 1984 and 1994 and Landsat 7 ETM+(R) data from the year 2000 were used in the study. The results show that the NDVI significantly separates areas with vegetation cover decrease from areas with no vegetation cover decrease in sensitive, high-latitude mountain ecosystems, such as mountainous dry heath communities. Copyright (c) 2005 John Wiley T Sons, Ltd.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 10 条
  • [1] Land Cover Change Detection over Urban Stream's Drainage Area Using Landsat TM and ETM+ Images
    Kim, Jae-cheol
    Park, Cheol-hyun
    Shin, Dong-hoon
    Lee, Kyoo-seock
    KOREAN JOURNAL OF REMOTE SENSING, 2006, 22 (06) : 575 - 579
  • [2] Normalized difference vegetation change index: A technique for detecting vegetation changes using Landsat imagery
    Rokni, Komeil
    Musa, Tajul Ariffin
    CATENA, 2019, 178 : 59 - 63
  • [3] Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM plus imagery and field vegetation data
    Hais, Martin
    Jonasova, Magda
    Langhammer, Jakub
    Kucera, Tomas
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) : 835 - 845
  • [4] A robust multi-kernel change detection framework for detecting leaf beetle defoliation using Landsat 7 ETM+ data
    Anees, Asim
    Aryal, Jagannath
    O'Reilly, Malgorzata M.
    Gale, Timothy J.
    Wardlaw, Tim
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 122 : 167 - 178
  • [5] Detection of vegetation abundance change in the alpine tree line using multitemporal Landsat Thematic Mapper imagery
    Chen, Yaoliang
    Lu, Dengsheng
    Luo, Geping
    Huang, Jingfeng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (18) : 4683 - 4701
  • [6] Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM plus data
    Vila, Jose Pablo Solans
    Barbosa, Paulo
    ECOLOGICAL MODELLING, 2010, 221 (01) : 75 - 84
  • [7] Detection of Archaeological Crop Marks in Cyprus Using Vegetation Indices from Landsat TM/ETM plus Satellite Images and Field Spectroscopy Measurements
    Agapiou, Athos
    Hadjimitsis, Diofantos G.
    Themistocleous, K.
    Papadavid, Giorgos
    Toulios, Leonidas
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING-GIS APPLICATIONS, 2010, 7831
  • [8] Support Vector Machines for Automatic Multi-class Change Detection in Algerian Capital Using Landsat TM Imagery
    Hassiba Nemmour
    Youcef Chibani
    Journal of the Indian Society of Remote Sensing, 2010, 38 : 585 - 591
  • [9] Support Vector Machines for Automatic Multi-class Change Detection in Algerian Capital Using Landsat TM Imagery
    Nemmour, Hassiba
    Chibani, Youcef
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2010, 38 (04) : 585 - 591
  • [10] A SWIR-based vegetation index for change detection in land cover using multi-temporal Landsat satellite dataset
    Kumar S.
    Arya S.
    Jain K.
    International Journal of Information Technology, 2022, 14 (4) : 2035 - 2048